論文の概要: Learning Nonlinearity of Boolean Functions: An Experimentation with Neural Networks
- arxiv url: http://arxiv.org/abs/2502.01060v1
- Date: Mon, 03 Feb 2025 05:10:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:49.862508
- Title: Learning Nonlinearity of Boolean Functions: An Experimentation with Neural Networks
- Title(参考訳): ブール関数の非線形性を学習する:ニューラルネットワークによる実験
- Authors: Sriram Ranga, Nandish Chattopadhyay, Anupam Chattopadhyay,
- Abstract要約: 我々は,ブール関数の非線形性を学習するために,エンコーダスタイルのディープニューラルネットワークを訓練する。
ディープニューラルネットワークは,4変数と5変数の関数の性質を95%以上の精度で予測できることを示す。
- 参考スコア(独自算出の注目度): 3.4179091429029382
- License:
- Abstract: This paper investigates the learnability of the nonlinearity property of Boolean functions using neural networks. We train encoder style deep neural networks to learn to predict the nonlinearity of Boolean functions from examples of functions in the form of a truth table and their corresponding nonlinearity values. We report empirical results to show that deep neural networks are able to learn to predict the property for functions in 4 and 5 variables with an accuracy above 95%. While these results are positive and a disciplined analysis is being presented for the first time in this regard, we should also underline the statutory warning that it seems quite challenging to extend the idea to higher number of variables, and it is also not clear whether one can get advantage in terms of time and space complexity over the existing combinatorial algorithms.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いたブール関数の非線形特性の学習性について検討する。
我々は,真理表形式の関数とその対応する非線形性値の例からブール関数の非線形性を予測することを学ぶために,エンコーダスタイルのディープニューラルネットワークを訓練する。
本研究では,4変数と5変数の関数の性質を95%以上の精度で予測できることを,ディープニューラルネットワークが学習可能であることを示す実験結果について報告する。
これらの結果は肯定的であり、この点に関して初めて規律付き分析が提示されているが、この概念をより多くの変数に拡張することは極めて困難であり、既存の組合せアルゴリズムよりも時間と空間の複雑さを活かすことができるかどうかも明らかになっていない、という法定警告を下記しておく必要がある。
関連論文リスト
- Explainable Neural Networks with Guarantees: A Sparse Estimation Approach [11.142723510517778]
本稿では,予測性と説明可能性に調和した説明可能なニューラルネットワークを構築するための新しいアプローチを提案する。
我々のモデルはSparXnetと呼ばれ、共同学習された特徴のスパースセットの線形結合として設計されている。
我々の研究は、スパースニューラルネットワークと説明可能なニューラルネットワークのさらなる研究の道を開く。
論文 参考訳(メタデータ) (2025-01-02T12:10:17Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Instance-wise Linearization of Neural Network for Model Interpretation [13.583425552511704]
この課題は、ニューラルネットワークの非線形動作に潜むことができる。
ニューラルネットワークモデルでは、非線形な振る舞いはモデルの非線形なアクティベーションユニットによって引き起こされることが多い。
本稿では,ニューラルネットワーク予測のフォワード計算過程を再構成するインスタンスワイズ線形化手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T02:07:39Z) - Utility-Probability Duality of Neural Networks [4.871730595406078]
本稿では,ディープラーニングにおける標準教師あり学習手順に対するユーティリティに基づく代替的説明を提案する。
基本的な考え方は、学習したニューラルネットワークを確率モデルではなく、順序付きユーティリティ関数として解釈することである。
ソフトマックス出力を持つ全てのニューラルネットワークに対して、最大推定値のSGD学習ダイナミクスを反復過程と見なすことができる。
論文 参考訳(メタデータ) (2023-05-24T08:09:07Z) - Points of non-linearity of functions generated by random neural networks [0.0]
1つの隠れ活性化層、任意の幅、ReLU活性化関数を持つニューラルネットワークによって出力される実数から実数への関数を考える。
非線型性の点の期待分布を計算する。
論文 参考訳(メタデータ) (2023-04-19T17:40:19Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - A Theoretical Analysis on Feature Learning in Neural Networks: Emergence
from Inputs and Advantage over Fixed Features [18.321479102352875]
ニューラルネットワークの重要な特徴は、予測に有効な特徴を持つ入力データの表現を学ぶ能力である。
実践的なデータによって動機づけられた学習問題を考察し、そこでは、ラベルが一連のクラス関連パターンによって決定され、それらから入力が生成される。
勾配降下によって訓練されたニューラルネットワークがこれらの問題に成功できることを実証する。
論文 参考訳(メタデータ) (2022-06-03T17:49:38Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。