FourieRF: Few-Shot NeRFs via Progressive Fourier Frequency Control
- URL: http://arxiv.org/abs/2502.01405v1
- Date: Mon, 03 Feb 2025 14:36:59 GMT
- Title: FourieRF: Few-Shot NeRFs via Progressive Fourier Frequency Control
- Authors: Diego Gomez, Bingchen Gong, Maks Ovsjanikov,
- Abstract summary: We introduce FourieRF, a novel approach for achieving fast and high-quality reconstruction in the few-shot setting.
Our method effectively parameterizes features through an explicit curriculum training procedure, incrementally increasing scene complexity during optimization.
- Score: 29.152121594780482
- License:
- Abstract: In this work, we introduce FourieRF, a novel approach for achieving fast and high-quality reconstruction in the few-shot setting. Our method effectively parameterizes features through an explicit curriculum training procedure, incrementally increasing scene complexity during optimization. Experimental results show that the prior induced by our approach is both robust and adaptable across a wide variety of scenes, establishing FourieRF as a strong and versatile baseline for the few-shot rendering problem. While our approach significantly reduces artifacts, it may still lead to reconstruction errors in severely under-constrained scenarios, particularly where view occlusion leaves parts of the shape uncovered. In the future, our method could be enhanced by integrating foundation models to complete missing parts using large data-driven priors.
Related papers
- DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction.
Few-shot methods often struggle with poor reconstruction quality in vast environments.
This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes.
arXiv Detail & Related papers (2024-11-19T07:51:44Z) - Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors [6.729663383705042]
We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details.
Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales.
Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time.
arXiv Detail & Related papers (2024-10-21T17:59:53Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
We introduce an innovative, training-free approach FouriScale from the perspective of frequency domain analysis.
We replace the original convolutional layers in pre-trained diffusion models by incorporating a dilation technique along with a low-pass operation.
Our method successfully balances the structural integrity and fidelity of generated images, achieving an astonishing capacity of arbitrary-size, high-resolution, and high-quality generation.
arXiv Detail & Related papers (2024-03-19T17:59:33Z) - BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial
Imagery [3.4956406636452626]
We introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery.
We present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps.
We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution.
arXiv Detail & Related papers (2024-02-07T03:18:34Z) - FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [16.940023904740585]
We introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models.
Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality.
arXiv Detail & Related papers (2023-12-06T14:24:26Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
We conduct the first pilot study on training NeRF with high-resolution data.
We propose the corresponding solutions, including marrying the multilayer perceptron with convolutional layers.
Our approach is nearly free without introducing obvious training/testing costs.
arXiv Detail & Related papers (2022-11-17T17:22:28Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.