Visual Attention Never Fades: Selective Progressive Attention ReCalibration for Detailed Image Captioning in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2502.01419v1
- Date: Mon, 03 Feb 2025 14:58:11 GMT
- Title: Visual Attention Never Fades: Selective Progressive Attention ReCalibration for Detailed Image Captioning in Multimodal Large Language Models
- Authors: Mingi Jung, Saehuyng Lee, Eunji Kim, Sungroh Yoon,
- Abstract summary: We propose a training-free method that enhances the contribution of visual tokens during decoding.<n>Our experiments, incorporating both automated and human evaluations, demonstrate that existing methods improve the precision of MLLMs at the cost of recall.
- Score: 35.49886398402627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detailed image captioning is essential for tasks like data generation and aiding visually impaired individuals. High-quality captions require a balance between precision and recall, which remains challenging for current multimodal large language models (MLLMs). In this work, we hypothesize that this limitation stems from weakening and increasingly noisy visual attention as responses lengthen. To address this issue, we propose SPARC (Selective Progressive Attention ReCalibration), a training-free method that enhances the contribution of visual tokens during decoding. SPARC is founded on three key observations: (1) increasing the influence of all visual tokens reduces recall; thus, SPARC selectively amplifies visual tokens; (2) as captions lengthen, visual attention becomes noisier, so SPARC identifies critical visual tokens by leveraging attention differences across time steps; (3) as visual attention gradually weakens, SPARC reinforces it to preserve its influence. Our experiments, incorporating both automated and human evaluations, demonstrate that existing methods improve the precision of MLLMs at the cost of recall. In contrast, our proposed method enhances both precision and recall with minimal computational overhead.
Related papers
- Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs [62.9348974370985]
We propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost.
Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens.
Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors.
arXiv Detail & Related papers (2025-03-11T11:52:37Z) - PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)
HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.
PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
arXiv Detail & Related papers (2025-03-09T07:07:03Z) - MINT: Mitigating Hallucinations in Large Vision-Language Models via Token Reduction [6.416957959150438]
Hallucinations hinder the application of Large Vision-Language Models (LVLMs) in domains that require high reliability.<n>We propose MINT, a training-free decoding strategy, MItigating hallucinations via tokeN reducTion.<n>Our approach achieves a 4% improvement in mitigating hallucinations caused by distracted perception compared to original models.
arXiv Detail & Related papers (2025-02-02T08:34:57Z) - Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model [0.0]
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content.<n>These models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image.<n>We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding.
arXiv Detail & Related papers (2025-01-21T15:22:31Z) - AdaFV: Rethinking of Visual-Language alignment for VLM acceleration [7.9213473377478865]
Some approaches to reduce the visual tokens according to the self-attention of VLMs, which are biased, result in inaccurate responses.<n>We propose a self-adaptive cross-modality attention mixture mechanism that dynamically leverages the effectiveness of visual saliency and text-to-image similarity.<n>The proposed approach achieves state-of-the-art training-free VLM acceleration performance, especially when the reduction rate is sufficiently large.
arXiv Detail & Related papers (2025-01-16T13:34:33Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.<n>However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.<n>We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding [14.701135083174918]
Large Vision-Language Models (LVLMs) generate detailed and coherent responses from visual inputs.
They are prone to generate hallucinations due to an over-reliance on language priors.
We propose a novel method, Summary-Guided Decoding (SGD)
arXiv Detail & Related papers (2024-10-17T08:24:27Z) - Linguistic More: Taking a Further Step toward Efficient and Accurate
Scene Text Recognition [92.6211155264297]
Vision models have gained increasing attention due to their simplicity and efficiency in Scene Text Recognition (STR) task.
Recent vision models suffer from two problems: (1) the pure vision-based query results in attention drift, which usually causes poor recognition and is summarized as linguistic insensitive drift (LID) problem in this paper.
We propose a $textbfL$inguistic $textbfP$erception $textbfV$ision model (LPV) which explores the linguistic capability of vision model for accurate text recognition.
arXiv Detail & Related papers (2023-05-09T02:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.