100 Particles Quantum Heat Engine: Exploring the Impact of Criticality on Efficiency
- URL: http://arxiv.org/abs/2502.01469v1
- Date: Mon, 03 Feb 2025 16:03:17 GMT
- Title: 100 Particles Quantum Heat Engine: Exploring the Impact of Criticality on Efficiency
- Authors: Anass Hminat, Abdallah Slaoui, Brahim Amghar, Rachid Ahl Laamara,
- Abstract summary: We explore the performance of a quantum Otto cycle using a long-range Ising chain as the working substance.
We examine how internal factors, specifically, the power-law exponent, the number of particles, and the hot and cold reservoir temperatures, affect the system's operation in different modes.
- Score: 0.0
- License:
- Abstract: Quantum many-body systems present substantial technical challenges from both analytical and numerical perspectives. Despite these difficulties, some progress has been made, including studies of interacting atomic gases and interacting quantum spins. Furthermore, the potential for criticality to enhance engine performance has been demonstrated, suggesting a promising direction for future investigation. Here, we explore the performance of a quantum Otto cycle using a long-range Ising chain as the working substance. We consider an idealized cycle consisting of two adiabatic transformations and two perfect thermalizations, eliminating dissipation. Analyzing both engine and refrigerator modes, we investigate the influence of particle number, varied from $10$ to $100$, on efficiencies and behavior near the critical point of the phase transition, which we characterize using a scaling factor. We also examine how internal factors, specifically, the power-law exponent, the number of particles, and the hot and cold reservoir temperatures, affect the system's operation in different modes. Our results reveal that these factors have a different impact compared to their classical counterparts.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum heat engine with long-range advantages [0.0]
Long-range interactions in quantum devices provide a route towards enhancing their performance in quantum technology applications.
We show that a substantial thermodynamic advantage may be achieved as the range of the interactions among its constituents increases.
This effect allows mitigating the trade-off between power and efficiency, paving the way for a wide range of experimental and technological applications.
arXiv Detail & Related papers (2022-08-19T18:00:28Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Non-equilibrium quantum thermodynamics of a particle trapped in a
controllable time-varying potential [0.0]
We study the dynamics of a levitated nanoparticles undergoing the transition from an harmonic potential to a double-well.
We investigate the dynamics with the Wehrl entropy production and its rates.
The effects and the competitions of the unitary and the dissipative parts onto the system are demonstrated.
arXiv Detail & Related papers (2021-10-29T16:25:25Z) - Driven quantum harmonic oscillators: A working medium for thermal
machines [0.0]
We consider a working substance that is permanently coupled to two or more baths at different temperatures and continuously driven.
We derive the heat flows and power of the working device which can operate as an engine, refrigerator or accelerator.
An increased driving frequency can lead to a change of functioning to a dissipator.
arXiv Detail & Related papers (2021-08-25T16:53:45Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.