論文の概要: A Poisson Process AutoDecoder for X-ray Sources
- arxiv url: http://arxiv.org/abs/2502.01627v1
- Date: Mon, 03 Feb 2025 18:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:20.357018
- Title: A Poisson Process AutoDecoder for X-ray Sources
- Title(参考訳): X線源用ポアソンプロセスオートデコーダ
- Authors: Yanke Song, Victoria Ashley Villar, Juan Rafael Martinez-Galarza, Steven Dillmann,
- Abstract要約: Poisson Process AutoDecoder (PPAD) は、固定長遅延特徴を連続したPoissonレート関数にマッピングするニューラルネットワークデコーダである。
再建, 回帰, 分類, 異常検出実験によるPPADの有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: X-ray observing facilities, such as the Chandra X-ray Observatory and the eROSITA, have detected millions of astronomical sources associated with high-energy phenomena. The arrival of photons as a function of time follows a Poisson process and can vary by orders-of-magnitude, presenting obstacles for common tasks such as source classification, physical property derivation, and anomaly detection. Previous work has either failed to directly capture the Poisson nature of the data or only focuses on Poisson rate function reconstruction. In this work, we present Poisson Process AutoDecoder (PPAD). PPAD is a neural field decoder that maps fixed-length latent features to continuous Poisson rate functions across energy band and time via unsupervised learning. PPAD reconstructs the rate function and yields a representation at the same time. We demonstrate the efficacy of PPAD via reconstruction, regression, classification and anomaly detection experiments using the Chandra Source Catalog.
- Abstract(参考訳): チャンドラX線観測所やエロシタのようなX線観測施設は、高エネルギー現象に関連する何百万もの天文学的な情報源を検出している。
時間の関数としての光子の到来は、ポアソン過程に従っており、マグニチュードの順序によって変化し、ソース分類、物理的性質の導出、異常検出などの共通タスクの障害を示す。
以前の研究は、データのポアソンの性質を直接把握できなかったか、ポアソン率関数の再構築のみに焦点を当てたものだった。
本稿ではPoisson Process AutoDecoder(PPAD)を紹介する。
PPADは、固定長潜時特徴をエネルギーバンドと時間にわたって非教師なし学習を通して連続的なポアソン速度関数にマッピングするニューラルネットワークデコーダである。
PPADはレート関数を再構成し、同時に表現を生成する。
Chandra Source Catalog を用いた復元,回帰,分類,異常検出実験によるPPADの有効性を実証した。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Streaming Factor Trajectory Learning for Temporal Tensor Decomposition [33.18423605559094]
時相テンソル分解のためのストリーム係数軌道学習を提案する。
我々はガウス過程(GP)を用いて因子の軌道をモデル化し、その時間的進化を柔軟に推定する。
合成タスクと実世界のアプリケーションの両方において、SFTLの利点を示してきた。
論文 参考訳(メタデータ) (2023-10-25T21:58:52Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - Probabilistic Tracking with Deep Factors [8.030212474745879]
因子グラフに基づく確率的追跡フレームワークにおける特徴量に対する生成密度と組み合わせたディープ・フィーチャー・エンコーディングの使い方を示す。
本稿では,学習した特徴エンコーダと生成密度を組み合わせる可能性モデルを提案する。
論文 参考訳(メタデータ) (2021-12-02T21:31:51Z) - Periodic Activation Functions Induce Stationarity [19.689175123261613]
本研究では,ベイズニューラルネットワークにおける周期的活性化関数が,ネットワーク重みと翻訳不変な定常ガウス過程とを関連づけていることを示す。
一連の実験において、周期的アクティベーション関数はドメイン内のデータに匹敵する性能を示し、ドメイン外検出のための深層ニューラルネットワークにおける摂動入力に対する感度を捉える。
論文 参考訳(メタデータ) (2021-10-26T11:10:37Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
実世界の強化学習(RL)の応用は、メガピクセルカメラから生成されたような高次元の観察にエージェントが対処する必要がある。
従来の研究は表現学習でこのような問題に対処しており、エージェントは生の観察から内因性、潜伏状態の情報を確実に抽出することができる。
しかし、このような手法は観測において時間的に相関するノイズの存在下では失敗する可能性がある。
論文 参考訳(メタデータ) (2021-10-17T15:21:27Z) - Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data [66.70036251870988]
疾病予防管理センター(CDC)は他の連邦機関と協力して、新型コロナウイルス(COVID-19)の感染が増加する郡(ホットスポット)を特定する。
本稿では,米国における新型コロナウイルスホットスポットの早期発見のためのスパースモデルを提案する。
深層ニューラルネットワークは、カーネルの解釈可能性を維持しながらモデルの代表的なパワーを高めるために導入されている。
論文 参考訳(メタデータ) (2021-05-31T19:28:17Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Temporal Poisson Square Root Graphical Models [8.220217498103311]
時系列イベントデータをモデル化するための時間的ポアソン平方根グラフモデル(TPSQR)を提案する。
TPSQRは、任意のイベントタイプの発生が他のタイプを興奮または抑制できるかどうかについて、全体的な視点を提供することができる。
論文 参考訳(メタデータ) (2020-05-12T22:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。