論文の概要: EFKAN: A KAN-Integrated Neural Operator For Efficient Magnetotelluric Forward Modeling
- arxiv url: http://arxiv.org/abs/2502.02195v1
- Date: Tue, 04 Feb 2025 10:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:16.293630
- Title: EFKAN: A KAN-Integrated Neural Operator For Efficient Magnetotelluric Forward Modeling
- Title(参考訳): 効率の良い恒星フォワードモデリングのためのKA集積型ニューラル演算子EFKAN
- Authors: Feng Wang, Hong Qiu, Yingying Huang, Xiaozhe Gu, Renfang Wang, Bo Yang,
- Abstract要約: 我々はコルモゴロフ・アルノルドネットワーク(EFKAN)を用いた新しいニューラル演算子(FNO)を提案する。
EFKANフレームワーク内では、FNOは周波数領域の比抵抗モデルから見かけの比抵抗と位相を計算する分岐ネットワークとして機能する。
提案手法は, 所望の周波数と位置でインバージョンを施したNOと比較して, 比抵抗と位相を求める際の精度が高い。
- 参考スコア(独自算出の注目度): 5.564398767957128
- License:
- Abstract: Magnetotelluric (MT) forward modeling is fundamental for improving the accuracy and efficiency of MT inversion. Neural operators (NOs) have been effectively used for rapid MT forward modeling, demonstrating their promising performance in solving the MT forward modeling-related partial differential equations (PDEs). Particularly, they can obtain the electromagnetic field at arbitrary locations and frequencies. In these NOs, the projection layers have been dominated by multi-layer perceptrons (MLPs), which may potentially reduce the accuracy of solution due to they usually suffer from the disadvantages of MLPs, such as lack of interpretability, overfitting, and so on. Therefore, to improve the accuracy of MT forward modeling with NOs and explore the potential alternatives to MLPs, we propose a novel neural operator by extending the Fourier neural operator (FNO) with Kolmogorov-Arnold network (EFKAN). Within the EFKAN framework, the FNO serves as the branch network to calculate the apparent resistivity and phase from the resistivity model in the frequency domain. Meanwhile, the KAN acts as the trunk network to project the resistivity and phase, determined by the FNO, to the desired locations and frequencies. Experimental results demonstrate that the proposed method not only achieves higher accuracy in obtaining apparent resistivity and phase compared to the NO equipped with MLPs at the desired frequencies and locations but also outperforms traditional numerical methods in terms of computational speed.
- Abstract(参考訳): MTフォワードモデリングはMTインバージョンにおける精度と効率を向上させるための基礎となる。
ニューラル作用素 (NOs) は高速MTフォワードモデリングに効果的に用いられ、MTフォワードモデリング関連偏微分方程式 (PDE) の解法において有望な性能を示した。
特に、任意の位置と周波数で電磁界を得ることができる。
これらのNOでは、プロジェクション層は多層パーセプトロン(MLP)によって支配されており、通常は解釈性の欠如や過剰適合など、MLPの欠点に悩まされるため、解の精度が低下する可能性がある。
そこで我々は,NOを用いたMTフォワードモデリングの精度を向上し,MLPに代わる可能性を探るため,Funier Neural operator (FNO) をコルモゴロフ・アルノルドネットワーク (EFKAN) で拡張した新しいニューラル演算子を提案する。
EFKANフレームワーク内では、FNOは周波数領域の比抵抗モデルから見かけの比抵抗と位相を計算する分岐ネットワークとして機能する。
一方、KAは、FNOによって決定される比抵抗と位相を所望の場所と周波数に投影するトランクネットワークとして機能する。
実験結果から,提案手法は所望の周波数と位置でMLPを装着したNOと比較して,比抵抗と位相の明らかな精度を得るだけでなく,計算速度の点で従来の数値法よりも優れていた。
関連論文リスト
- Multi-frequency wavefield solutions for variable velocity models using meta-learning enhanced low-rank physics-informed neural network [3.069335774032178]
物理インフォームドニューラルネットワーク(PINN)は、複雑な速度モデルにおける多周波波場をモデル化する上で大きな課題に直面している。
本稿では,低ランクパラメータ化とメタラーニング,周波数埋め込みを組み合わせた新しいフレームワークMeta-LRPINNを提案する。
数値実験により,Meta-LRPINNはベースライン法に比べて高速に収束し,精度が高いことがわかった。
論文 参考訳(メタデータ) (2025-02-02T20:12:39Z) - Implicit factorized transformer approach to fast prediction of turbulent channel flows [6.70175842351963]
本稿では,従来の連鎖因数分解処理を並列因数分解処理に置き換える改良型暗黙因数分解変換器 (IFactFormer-m) モデルを提案する。
IFactFormer-mモデルは乱流流の長期予測に成功している。
論文 参考訳(メタデータ) (2024-12-25T09:05:14Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
ニューラル演算子学習の最近の進歩にインスパイアされた機械学習(ML)モデルであるU-AFNO(Adaptive Fourier Neural Operators)を提案する。
U-AFNOを使って、現在の時間ステップでフィールドを後の時間ステップにマッピングするダイナミクスを学習します。
高忠実度数値解法と同等の精度で重要なミクロ構造統計とQoIを再現する。
論文 参考訳(メタデータ) (2024-06-24T20:13:23Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
深部電磁法(EM)測定における深部学習モデルの近似特性と関連するモデル誤差の影響について検討した。
フォワードモデルとしてディープニューラルネットワーク(DNN)を使用することで、数秒で数千のモデル評価を実行できます。
本稿では, モデル誤差を無視しながら, EM測定の逆転に伴う問題を明らかにする数値計算結果を提案する。
論文 参考訳(メタデータ) (2022-05-25T11:44:48Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine(fm)は、機能間の高次インタラクションを自動的に学習し、手動の機能エンジニアリングを必要とせずに予測を行うことができる。
本研究では,スパース予測解析のためのQFM(Quaternion factorization Machine)とQNFM(Quaternion neural factorization Machine)を提案する。
論文 参考訳(メタデータ) (2021-04-05T00:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。