EFKAN: A KAN-Integrated Neural Operator For Efficient Magnetotelluric Forward Modeling
- URL: http://arxiv.org/abs/2502.02195v1
- Date: Tue, 04 Feb 2025 10:21:14 GMT
- Title: EFKAN: A KAN-Integrated Neural Operator For Efficient Magnetotelluric Forward Modeling
- Authors: Feng Wang, Hong Qiu, Yingying Huang, Xiaozhe Gu, Renfang Wang, Bo Yang,
- Abstract summary: We propose a novel neural operator (FNO) with Kolmogorov-Arnold network (EFKAN)
Within the EFKAN framework, the FNO serves as the branch network to calculate the apparent resistivity and phase from the resistivity model in the frequency domain.
The proposed method achieves higher accuracy in obtaining apparent resistivity and phase compared to the NO equipped with inversions at the desired frequencies and locations.
- Score: 5.564398767957128
- License:
- Abstract: Magnetotelluric (MT) forward modeling is fundamental for improving the accuracy and efficiency of MT inversion. Neural operators (NOs) have been effectively used for rapid MT forward modeling, demonstrating their promising performance in solving the MT forward modeling-related partial differential equations (PDEs). Particularly, they can obtain the electromagnetic field at arbitrary locations and frequencies. In these NOs, the projection layers have been dominated by multi-layer perceptrons (MLPs), which may potentially reduce the accuracy of solution due to they usually suffer from the disadvantages of MLPs, such as lack of interpretability, overfitting, and so on. Therefore, to improve the accuracy of MT forward modeling with NOs and explore the potential alternatives to MLPs, we propose a novel neural operator by extending the Fourier neural operator (FNO) with Kolmogorov-Arnold network (EFKAN). Within the EFKAN framework, the FNO serves as the branch network to calculate the apparent resistivity and phase from the resistivity model in the frequency domain. Meanwhile, the KAN acts as the trunk network to project the resistivity and phase, determined by the FNO, to the desired locations and frequencies. Experimental results demonstrate that the proposed method not only achieves higher accuracy in obtaining apparent resistivity and phase compared to the NO equipped with MLPs at the desired frequencies and locations but also outperforms traditional numerical methods in terms of computational speed.
Related papers
- Multi-frequency wavefield solutions for variable velocity models using meta-learning enhanced low-rank physics-informed neural network [3.069335774032178]
Physics-informed neural networks (PINNs) face significant challenges in modeling multi-frequency wavefields in complex velocity models.
We propose Meta-LRPINN, a novel framework that combines low-rank parameterization with meta-learning and frequency embedding.
Numerical experiments show that Meta-LRPINN achieves much fast convergence speed and much high accuracy compared to baseline methods.
arXiv Detail & Related papers (2025-02-02T20:12:39Z) - Implicit factorized transformer approach to fast prediction of turbulent channel flows [6.70175842351963]
We introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention.
The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow.
arXiv Detail & Related papers (2024-12-25T09:05:14Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
We propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning.
We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step.
Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver.
arXiv Detail & Related papers (2024-06-24T20:13:23Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
We study the effects of the approximate nature of the deep learned models and associated model errors during the inversion of extra-deep borehole electromagnetic (EM) measurements.
Using a deep neural network (DNN) as a forward model allows us to perform thousands of model evaluations within seconds.
We present numerical results highlighting the challenges associated with the inversion of EM measurements while neglecting model error.
arXiv Detail & Related papers (2022-05-25T11:44:48Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.