Bayesian Optimization for Repeater Protocols
- URL: http://arxiv.org/abs/2502.02208v1
- Date: Tue, 04 Feb 2025 10:46:12 GMT
- Title: Bayesian Optimization for Repeater Protocols
- Authors: Lorenzo La Corte, Kenneth Goodenough, Ananda G. Maity, Siddhartha Santra, David Elkouss,
- Abstract summary: "First-generation" quantum repeater chains distribute entanglement by executing protocols composed of probabilistic entanglement generation, swapping and distillation operations.
We show that calculating the secretkey rate for a given protocol is non-trivial due to experimental imperfections and the probabilistic nature of the operations.
We use our framework to extract insight on how to maximize the efficiency of repeater protocols across varying node configurations and hardware conditions.
- Score: 0.0
- License:
- Abstract: Efficiently distributing secret keys over long distances remains a critical challenge in the development of quantum networks. "First-generation" quantum repeater chains distribute entanglement by executing protocols composed of probabilistic entanglement generation, swapping and distillation operations. However, finding the protocol that maximizes the secret-key rate is difficult for two reasons. First, calculating the secretkey rate for a given protocol is non-trivial due to experimental imperfections and the probabilistic nature of the operations. Second, the protocol space rapidly grows with the number of nodes, and lacks any clear structure for efficient exploration. To address the first challenge, we build upon the efficient machinery developed by Li et al. [1] and we extend it, enabling numerical calculation of the secret-key rate for heterogeneous repeater chains with an arbitrary number of nodes. For navigating the large, unstructured space of repeater protocols, we implement a Bayesian optimization algorithm, which we find consistently returns the optimal result. Whenever comparisons are feasible, we validate its accuracy against results obtained through brute-force methods. Further, we use our framework to extract insight on how to maximize the efficiency of repeater protocols across varying node configurations and hardware conditions. Our results highlight the effectiveness of Bayesian optimization in exploring the potential of near-term quantum repeater chains.
Related papers
- Protocols and Trade-Offs of Quantum State Purification [4.732131350249]
We introduce a general state purification framework designed to achieve the highest fidelity with a specified probability.
For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco and al.
We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions.
arXiv Detail & Related papers (2024-04-01T14:34:45Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable fast benchmarking for individual quantum gates with local
twirling [1.7995166939620801]
We propose a character-cycle benchmarking protocol and a character-average benchmarking protocol only using local twirling gates.
We numerically demonstrate our protocols for a non-Clifford gate -- controlled-$(TX)$ and a Clifford gate -- five-qubit quantum error-correcting encoding circuit.
arXiv Detail & Related papers (2022-03-19T13:01:14Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Efficient optimization of cut-offs in quantum repeater chains [0.0]
We develop an algorithm for computing the probability distribution of the waiting time and fidelity of entanglement produced by repeater chain protocols.
We use the algorithm to optimize cut-offs in order to maximize secret-key rate between the end nodes of the repeater chain.
arXiv Detail & Related papers (2020-05-11T09:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.