Semantic Entanglement-Based Ransomware Detection via Probabilistic Latent Encryption Mapping
- URL: http://arxiv.org/abs/2502.02730v1
- Date: Tue, 04 Feb 2025 21:27:58 GMT
- Title: Semantic Entanglement-Based Ransomware Detection via Probabilistic Latent Encryption Mapping
- Authors: Mohammad Eisa, Quentin Yardley, Rafael Witherspoon, Harriet Pendlebury, Clement Rutherford,
- Abstract summary: Probabilistic Latent Encryption Mapping models encryption behaviors through statistical representations of entropy deviations and probabilistic dependencies in execution traces.
Evaluations demonstrate that entropy-driven classification reduces false positive rates while maintaining high detection accuracy across diverse ransomware families and encryption methodologies.
The ability to systematically infer encryption-induced deviations without requiring static attack signatures strengthens detection against adversarial evasion techniques.
- Score: 0.0
- License:
- Abstract: Encryption-based attacks have introduced significant challenges for detection mechanisms that rely on predefined signatures, heuristic indicators, or static rule-based classifications. Probabilistic Latent Encryption Mapping presents an alternative detection framework that models ransomware-induced encryption behaviors through statistical representations of entropy deviations and probabilistic dependencies in execution traces. Unlike conventional approaches that depend on explicit bytecode analysis or predefined cryptographic function call monitoring, probabilistic inference techniques classify encryption anomalies based on their underlying statistical characteristics, ensuring greater adaptability to polymorphic attack strategies. Evaluations demonstrate that entropy-driven classification reduces false positive rates while maintaining high detection accuracy across diverse ransomware families and encryption methodologies. Experimental results further highlight the framework's ability to differentiate between benign encryption workflows and adversarial cryptographic manipulations, ensuring that classification performance remains effective across cloud-based and localized execution environments. Benchmark comparisons illustrate that probabilistic modeling exhibits advantages over heuristic and machine learning-based detection approaches, particularly in handling previously unseen encryption techniques and adversarial obfuscation strategies. Computational efficiency analysis confirms that detection latency remains within operational feasibility constraints, reinforcing the viability of probabilistic encryption classification for real-time security infrastructures. The ability to systematically infer encryption-induced deviations without requiring static attack signatures strengthens detection robustness against adversarial evasion techniques.
Related papers
- Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework [0.0]
Monitoring entropy variations offers an alternative approach to identifying unauthorized data modifications.
A framework leveraging hierarchical entropy disruption was introduced to analyze deviations in entropy distributions.
evaluating the framework across multiple ransomware variants demonstrated its capability to achieve high detection accuracy.
arXiv Detail & Related papers (2025-02-12T23:29:06Z) - Hierarchical Manifold Projection for Ransomware Detection: A Novel Geometric Approach to Identifying Malicious Encryption Patterns [0.0]
Encryption-based cyber threats continue to evolve, employing increasingly sophisticated techniques to bypass traditional detection mechanisms.
A novel classification framework structured through hierarchical manifold projection introduces a mathematical approach to detecting malicious encryption.
The proposed methodology transforms encryption sequences into structured manifold embeddings, ensuring classification robustness through non-Euclidean feature separability.
arXiv Detail & Related papers (2025-02-11T23:20:58Z) - Neural Encrypted State Transduction for Ransomware Classification: A Novel Approach Using Cryptographic Flow Residuals [0.0]
An approach based on Neural Encrypted State Transduction (NEST) is introduced to analyze cryptographic flow residuals.
NEST maps state transitions dynamically, enabling high-confidence classification without requiring direct access to decrypted execution traces.
arXiv Detail & Related papers (2025-02-07T21:26:51Z) - Hierarchical Cryptographic Signature Mapping for Ransomware Classification: A Structural Decomposition Approach [0.0]
A hierarchical classification framework designed to analyze structural cryptographic properties provides a novel approach to distinguishing malicious encryption.
The study examines how cryptographic feature mapping facilitates improved classification accuracy.
The layered structural analysis further enhances forensic investigations, enabling security analysts to dissect encryption to trace attack origins.
arXiv Detail & Related papers (2025-01-31T13:23:51Z) - Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints [0.0]
The framework combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies.
It effectively distinguishes malicious encryption operations from benign activities while maintaining low false positive rates.
The inclusion of real-time anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection.
arXiv Detail & Related papers (2025-01-25T05:26:17Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.