論文の概要: SD++: Enhancing Standard Definition Maps by Incorporating Road Knowledge using LLMs
- arxiv url: http://arxiv.org/abs/2502.02773v1
- Date: Tue, 04 Feb 2025 23:35:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:39.912444
- Title: SD++: Enhancing Standard Definition Maps by Incorporating Road Knowledge using LLMs
- Title(参考訳): SD++: LLMを用いた道路知識の導入による標準定義マップの強化
- Authors: Hitvarth Diwanji, Jing-Yan Liao, Akshar Tumu, Henrik I. Christensen, Marcell Vazquez-Chanlatte, Chikao Tsuchiya,
- Abstract要約: 高精細地図(HD map)は、車線中心線と道路要素を捉える詳細な情報地図である。
SD++は、道路マニュアルから得られる位置依存の道路情報でSDマップを強化するエンドツーエンドパイプラインである。
- 参考スコア(独自算出の注目度): 2.905122328210335
- License:
- Abstract: High-definition maps (HD maps) are detailed and informative maps capturing lane centerlines and road elements. Although very useful for autonomous driving, HD maps are costly to build and maintain. Furthermore, access to these high-quality maps is usually limited to the firms that build them. On the other hand, standard definition (SD) maps provide road centerlines with an accuracy of a few meters. In this paper, we explore the possibility of enhancing SD maps by incorporating information from road manuals using LLMs. We develop SD++, an end-to-end pipeline to enhance SD maps with location-dependent road information obtained from a road manual. We suggest and compare several ways of using LLMs for such a task. Furthermore, we show the generalization ability of SD++ by showing results from both California and Japan.
- Abstract(参考訳): 高精細地図(HD map)は、車線中心線と道路要素を捉える詳細な情報地図である。
自動運転には大変便利だが、HDマップの構築とメンテナンスには費用がかかる。
さらに、これらの高品質な地図へのアクセスは通常、それらを構築する会社に限られる。
一方、標準定義(SD)マップは、数メートルの精度で道路中心線を提供する。
本稿では,LSMを用いた道路マニュアル情報の導入によるSDマップの強化の可能性を検討する。
道路マニュアルから得られる位置依存道路情報を用いてSDマップを拡張可能なエンドツーエンドパイプラインであるSD++を開発した。
このようなタスクにLLMを使う方法をいくつか提案し、比較する。
さらに,カリフォルニアと日本の双方の結果を示すことで,SD++の一般化能力を示す。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - DeepAerialMapper: Deep Learning-based Semi-automatic HD Map Creation for Highly Automated Vehicles [0.0]
高解像度空中画像からHDマップを作成するための半自動手法を提案する。
提案手法では, ニューラルネットワークを訓練して, 空中画像をHDマップに関連するクラスに意味的に分割する。
マップをLanelet2フォーマットにエクスポートすることで、さまざまなユースケースを簡単に拡張できる。
論文 参考訳(メタデータ) (2024-10-01T15:05:05Z) - Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps [14.535963852751635]
我々は,オンラインベクトル化HDマップ表現の開発において,軽量でスケーラブルな事前規格定義(SD)マップを活用することに注力する。
重要な発見は、SDマップエンコーダがモデル非依存であり、鳥の目視(BEV)エンコーダを利用する新しいアーキテクチャに迅速に適応できることである。
この結果から,オンライン地図作成タスクの先行作業としてSDマップを使用すると,コンバージェンスが大幅に向上し,オンラインセンターライン認識タスクの性能が30%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-01T19:39:55Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic
Understanding [57.108301842535894]
我々は、地上と頭上の画像からリッチなニューラル2Dマップを学習するディープネットワークSNAPを紹介する。
我々は、異なる入力から推定されるニューラルマップの整列をトレーニングし、何千万ものストリートビュー画像のカメラポーズでのみ監視する。
SNAPは、従来の手法の範囲を超えて、挑戦的な画像クエリの場所を解決できる。
論文 参考訳(メタデータ) (2023-06-08T17:54:47Z) - Exploring Navigation Maps for Learning-Based Motion Prediction [9.919575841909962]
本稿では,ナビゲーションマップを学習に基づく動き予測モデルに統合するアプローチについて述べる。
われわれのアプローチは、地図をまったく使わないよりも大幅に改善されている。
Argoverse用の公開ナビゲーションマップAPIにより,ナビゲーションマップを用いた独自のアプローチの開発と評価が可能となった。
論文 参考訳(メタデータ) (2023-02-13T09:06:27Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
論文 参考訳(メタデータ) (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3は、入力が生のセンサーデータと高レベルのコマンドであるマップレス運転に対するエンドツーエンドのアプローチである。
提案手法は, より安全で, 快適であり, 長期クローズループシミュレーションにおいて, ベースラインよりもコマンドを追従できることを示す。
論文 参考訳(メタデータ) (2021-01-18T00:09:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z) - Automatic Building and Labeling of HD Maps with Deep Learning [18.9340830352492]
生センサデータからラベル付きHDマップを生成する新しい手法を提案する。
その結果,提案した深層学習に基づく手法は,高精度なHDマップを作成できることがわかった。
論文 参考訳(メタデータ) (2020-06-01T00:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。