論文の概要: A Framework for Measuring the Quality of Infrastructure-as-Code Scripts
- arxiv url: http://arxiv.org/abs/2502.03127v1
- Date: Wed, 05 Feb 2025 12:36:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:23.833592
- Title: A Framework for Measuring the Quality of Infrastructure-as-Code Scripts
- Title(参考訳): インフラストラクチャ・アズ・コード・スクリプトの品質測定フレームワーク
- Authors: Pandu Ranga Reddy Konala, Vimal Kumar, David Bainbridge, Junaid Haseeb,
- Abstract要約: インフラストラクチャ・アズ・コード(IaC)は現代のソフトウェア開発に不可欠なものになっています。
IaCスクリプトの急速な普及は、より良いコード品質評価方法の必要性を強調している。
本稿では,リポジトリを基盤とする新しいIaCコード品質フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Infrastructure as Code (IaC) has become integral to modern software development, enabling automated and consistent configuration of computing environments. The rapid proliferation of IaC scripts has highlighted the need for better code quality assessment methods. This paper proposes a new IaC code quality framework specifically showcased for Ansible repositories as a foundation. By analyzing a comprehensive dataset of repositories from Ansible Galaxy, we applied our framework to evaluate code quality across multiple attributes. The analysis of our code quality metrics applied to Ansible Galaxy repositories reveal trends over time indicating improvements in areas such as metadata and error handling, while highlighting declines in others such as sophistication and automation. The framework offers practitioners a systematic tool for assessing and enhancing IaC scripts, fostering standardization and facilitating continuous improvement. It also provides a standardized foundation for further work into IaC code quality.
- Abstract(参考訳): インフラストラクチャ・アズ・コード(Infrastructure as Code, IaC)は、コンピュータ環境の自動化と一貫した構成を可能にする、現代のソフトウェア開発に不可欠なものになっている。
IaCスクリプトの急速な普及は、より良いコード品質評価方法の必要性を浮き彫りにした。
本稿では,Ansibleリポジトリを基盤とする新しいIaCコード品質フレームワークを提案する。
Ansible Galaxyのレポジトリの包括的なデータセットを分析して、複数の属性にわたるコード品質を評価するためにフレームワークを適用しました。
Ansible Galaxyレポジトリに適用したコード品質メトリクスの分析では、メタデータやエラーハンドリングといった分野の改善を示すとともに、洗練や自動化といった分野の低下を浮き彫りにしています。
このフレームワークは、IaCスクリプトの評価と拡張、標準化の促進、継続的な改善を促進するための体系的なツールを提供する。
また、IaCのコード品質をさらに改善するための標準化された基盤も提供する。
関連論文リスト
- On Iterative Evaluation and Enhancement of Code Quality Using GPT-4o [1.5960340244043023]
本稿では,Large Language Models (LLM) を利用したコード品質の反復評価と向上のための新しいフレームワークであるCodeQUESTを紹介する。
フレームワークは2つの主要なコンポーネントに分割されている。10次元にわたるコード品質を評価し、定量スコアと定性的な要約の両方を提供する評価器。
本研究は,CodeQUESTが既存のコード品質指標と整合して,コード品質を効果的かつ堅牢に評価できることを実証する。
論文 参考訳(メタデータ) (2025-02-11T09:27:00Z) - Bridging LLM-Generated Code and Requirements: Reverse Generation technique and SBC Metric for Developer Insights [0.0]
本稿では,SBCスコアと呼ばれる新しいスコアリング機構を提案する。
これは、大規模言語モデルの自然言語生成能力を活用するリバースジェネレーション技術に基づいている。
直接コード解析とは異なり、我々のアプローチはAI生成コードからシステム要求を再構築し、元の仕様と比較する。
論文 参考訳(メタデータ) (2025-02-11T01:12:11Z) - Skeleton-Guided-Translation: A Benchmarking Framework for Code Repository Translation with Fine-Grained Quality Evaluation [37.25839260805938]
Skeleton-Guided-Translationは、リポジトリレベルのJavaからC#へのコード変換のためのフレームワークで、きめ細かい品質評価がある。
本稿では,高品質なオープンソースJavaレポジトリとその対応するC#スケルトンベンチマークであるTransREPO-BENCHを紹介する。
論文 参考訳(メタデータ) (2025-01-27T13:44:51Z) - Adaptable Embeddings Network (AEN) [49.1574468325115]
我々はカーネル密度推定(KDE)を用いた新しいデュアルエンコーダアーキテクチャであるAdaptable Embeddings Networks (AEN)を紹介する。
AENは、再トレーニングせずに分類基準のランタイム適応を可能にし、非自己回帰的である。
アーキテクチャのプリプロセスとキャッシュ条件の埋め込み能力は、エッジコンピューティングアプリケーションやリアルタイム監視システムに最適である。
論文 参考訳(メタデータ) (2024-11-21T02:15:52Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
我々はGenAIのリスクをコードする統合的かつ包括的な評価プラットフォームSecCodePLTを開発した。
安全でないコードには、専門家と自動生成を組み合わせたデータ生成のための新しい方法論を導入する。
サイバー攻撃支援のために、我々はモデルに実際の攻撃を引き起こすよう促すサンプルと、我々の環境における動的な指標を構築した。
論文 参考訳(メタデータ) (2024-10-14T21:17:22Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution [48.86322922826514]
本稿では,知識認識型言語モデル属性(KaLMA)の新たな課題について述べる。
まず、属性のソースを構造化されていないテキストから知識グラフ(KG)に拡張し、そのリッチな構造は属性のパフォーマンスと作業シナリオの両方に役立ちます。
第2に,不完全な知識リポジトリを考慮した「意識的非能力」の設定を提案する。
第3に,テキスト品質,引用品質,引用アライメントを含む総合的な自動評価指標を提案する。
論文 参考訳(メタデータ) (2023-10-09T11:45:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。