論文の概要: Posterior SBC: Simulation-Based Calibration Checking Conditional on Data
- arxiv url: http://arxiv.org/abs/2502.03279v1
- Date: Wed, 05 Feb 2025 15:35:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:48.580901
- Title: Posterior SBC: Simulation-Based Calibration Checking Conditional on Data
- Title(参考訳): 後部SBC:データに基づくシミュレーションによる校正検査
- Authors: Teemu Säilynoja, Marvin Schmitt, Paul Bürkner, Aki Vehtari,
- Abstract要約: シミュレーションベースのキャリブレーションチェック(SBC)は、生成モデルからシミュレーションされたデータに対する反復推論による推論アルゴリズムとモデル実装の検証を指す。
本稿では,後部SBCを提案するとともに,観測データに対する推論条件の検証に有効であることを示す。
- 参考スコア(独自算出の注目度): 5.2327120673249405
- License:
- Abstract: Simulation-based calibration checking (SBC) refers to the validation of an inference algorithm and model implementation through repeated inference on data simulated from a generative model. In the original and commonly used approach, the generative model uses parameters drawn from the prior, and thus the approach is testing whether the inference works for simulated data generated with parameter values plausible under that prior. This approach is natural and desirable when we want to test whether the inference works for a wide range of datasets we might observe. However, after observing data, we are interested in answering whether the inference works conditional on that particular data. In this paper, we propose posterior SBC and demonstrate how it can be used to validate the inference conditionally on observed data. We illustrate the utility of posterior SBC in three case studies: (1) A simple multilevel model; (2) a model that is governed by differential equations; and (3) a joint integrative neuroscience model which is approximated via amortized Bayesian inference with neural networks.
- Abstract(参考訳): シミュレーションベースのキャリブレーションチェック(SBC)は、生成モデルからシミュレーションされたデータに対する反復推論による推論アルゴリズムとモデル実装の検証を指す。
原型的および一般的に用いられている手法では、生成モデルは事前から引き出されたパラメータを使用し、それに基づいて生成されたパラメータ値で生成されたシミュレーションデータに対して、推論が有効かどうかをテストする。
このアプローチは、私たちが観測する可能性のある幅広いデータセットに対して、推論が有効かどうかをテストしたい場合に、自然で望ましいものです。
しかし、データを観察した後、推測が特定のデータに対して条件付きであるかどうかに答えることに興味がある。
本稿では,後部SBCを提案するとともに,観測データに対する推論条件の検証に有効であることを示す。
後続SBCの有用性を,(1)単純多段階モデル,(2)微分方程式で支配されるモデル,(3)ニューラルネットワークによるアモータイズされたベイズ推論によって近似される結合統合神経科学モデル,の3つのケーススタディで説明する。
関連論文リスト
- A Kernel-Based Conditional Two-Sample Test Using Nearest Neighbors (with Applications to Calibration, Regression Curves, and Simulation-Based Inference) [3.622435665395788]
本稿では,2つの条件分布の違いを検出するカーネルベースの尺度を提案する。
2つの条件分布が同じである場合、推定はガウス極限を持ち、その分散はデータから容易に推定できる単純な形式を持つ。
また、条件付き適合性問題に適用可能な推定値を用いた再サンプリングベースのテストも提供する。
論文 参考訳(メタデータ) (2024-07-23T15:04:38Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Score Matched Conditional Exponential Families for Likelihood-Free
Inference [0.0]
Likelihood-Free Inference (LFI) はモデルからのシミュレーションに依存する。
モデルからパラメータシミュレーションペアを観測に基づいて独立に生成する。
重みをスコアマッチングで調整したニューラルネットワークを用いて,条件付き指数関数的家族度近似を学習する。
論文 参考訳(メタデータ) (2020-12-20T11:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。