論文の概要: Foundation for unbiased cross-validation of spatio-temporal models for species distribution modeling
- arxiv url: http://arxiv.org/abs/2502.03480v1
- Date: Mon, 27 Jan 2025 23:02:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 04:50:34.112078
- Title: Foundation for unbiased cross-validation of spatio-temporal models for species distribution modeling
- Title(参考訳): 種分布モデリングのための時空間モデルの不偏形クロスバリデーションの基礎
- Authors: Diana Koldasbayeva, Alexey Zaytsev,
- Abstract要約: 種別分布モデル (SDM) はしばしば空間自己相関 (SAC) に悩まされ、性能推定に偏りが生じる。
提案手法は, ランダム分割, 空間的ブロッキング, 環境的スキーム, 新たな時間的手法である。
- 参考スコア(独自算出の注目度): 2.6862667248315386
- License:
- Abstract: Species Distribution Models (SDMs) often suffer from spatial autocorrelation (SAC), leading to biased performance estimates. We tested cross-validation (CV) strategies - random splits, spatial blocking with varied distances, environmental (ENV) clustering, and a novel spatio-temporal method - under two proposed training schemes: LAST FOLD, widely used in spatial CV at the cost of data loss, and RETRAIN, which maximizes data usage but risks reintroducing SAC. LAST FOLD consistently yielded lower errors and stronger correlations. Spatial blocking at an optimal distance (SP 422) and ENV performed best, achieving Spearman and Pearson correlations of 0.485 and 0.548, respectively, although ENV may be unsuitable for long-term forecasts involving major environmental shifts. A spatio-temporal approach yielded modest benefits in our moderately variable dataset, but may excel with stronger temporal changes. These findings highlight the need to align CV approaches with the spatial and temporal structure of SDM data, ensuring rigorous validation and reliable predictive outcomes.
- Abstract(参考訳): 種別分布モデル (SDM) はしばしば空間自己相関 (SAC) に悩まされ、性能推定に偏りが生じる。
LAST FOLD(空間CV)とRETRAIN(データ利用を最大化するがSACを再導入するリスク)の2つのトレーニングスキームを用いて,ランダムスプリット,異なる距離での空間的ブロッキング,環境(ENV)クラスタリング,新しい時空間法を試験した。
LAST FOLDは一貫して低い誤差と強い相関を示した。
最適距離での空間遮断(SP 422)とENVは、それぞれ0.485と0.548のスピアマンとピアソンの相関を達成したが、ENVは大きな環境変化を伴う長期的な予測には適さない。
時空間的アプローチは、適度に変動するデータセットにおいて控えめな利点をもたらしたが、時間的変化がより強くなる可能性がある。
これらの知見は,SDMデータの空間的・時間的構造とCVアプローチを一致させることの必要性を強調し,厳密な検証と信頼性の高い予測結果を保証する。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
条件付きラテント空間変分オートエンコーダ(CL-VAE)は、既知の不整形クラスと未知の不整形クラスを持つデータに対する異常検出のための前処理を改善した。
モデルでは異常検出の精度が向上し、MNISTデータセットで97.4%のAUCが達成された。
さらに、CL-VAEは、アンサンブルの利点、より解釈可能な潜在空間、モデルサイズに制限のある複雑なデータでパターンを学習する能力の増大を示す。
論文 参考訳(メタデータ) (2024-10-16T07:48:53Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
この設定では、一般化されたクロスバリデーション推定器(GCV)がサンプル外リスクを正確に予測できないことを示す。
さらに、テストポイントがトレーニングセットと非自明な相関を持つ場合、時系列予測でしばしば発生する設定にまで分析を拡張します。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
本稿では,データ導出情報によるデータ多様体の幾何を考慮した移動型IV推定器を提案する。
本手法のプラグイン・アンド・プレイ実装は,標準設定で関連する推定器と同等に動作する。
論文 参考訳(メタデータ) (2024-05-19T17:49:33Z) - Supervised Contrastive Learning based Dual-Mixer Model for Remaining
Useful Life Prediction [3.081898819471624]
Remaining Useful Life (RUL)予測は、現在の予測モーメントからデバイスの完全な障害までの残時間を正確に見積もることを目的としている。
従来のRUL予測手法における時間的特徴と空間的特徴の厳密結合の欠点を克服するため,Dual-Mixerモデルと呼ばれる空間的時間的特徴抽出器を提案する。
提案手法の有効性は,C-MAPSSデータセットに関する他の最新の研究結果との比較により検証した。
論文 参考訳(メタデータ) (2024-01-29T14:38:44Z) - Joint model for longitudinal and spatio-temporal survival data [3.8448145915428644]
本研究では,空間的および時間的効果と相互作用を捉えるために,時空間結合モデル(STJM, Spatio-Nested Joint Model)を提案する。
我々は、米国住宅ローン借入者57,258人を対象に、250万人以上の観察を行った大規模データセットに対して、STJMを適用して全前払いの時期を予測した。
論文 参考訳(メタデータ) (2023-11-07T14:05:14Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - sasdim: self-adaptive noise scaling diffusion model for spatial time
series imputation [22.881248410404126]
空間的時系列計算を行うために,SASDimという自己適応型ノイズスケーリング拡散モデルを提案する。
具体的には、同様の強度に雑音を拡大できる新しい損失関数を提案し、空間的・時間的大域的畳み込みモジュールを提案する。
論文 参考訳(メタデータ) (2023-09-05T06:51:39Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Estimating the Prediction Performance of Spatial Models via Spatial
k-Fold Cross Validation [1.7205106391379026]
機械学習では、モデルの性能を評価するときにデータが独立していると仮定することが多い。
空間自己相関(spatial autocorrelation, SAC)は、標準クロスバリデーション(CV)法により、楽観的に偏りのある予測性能推定を生成する。
本研究では,SACによる楽観的バイアスを伴わないモデル予測性能を評価するため,空間k-fold Cross Validation (SKCV) と呼ばれるCV法の改良版を提案する。
論文 参考訳(メタデータ) (2020-05-28T19:55:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。