An Empirical Exploration of ChatGPT's Ability to Support Problem Formulation Tasks for Mission Engineering and a Documentation of its Performance Variability
- URL: http://arxiv.org/abs/2502.03511v1
- Date: Wed, 05 Feb 2025 17:58:23 GMT
- Title: An Empirical Exploration of ChatGPT's Ability to Support Problem Formulation Tasks for Mission Engineering and a Documentation of its Performance Variability
- Authors: Max Ofsa, Taylan G. Topcu,
- Abstract summary: This paper explores the quality and consistency of large language models (LLM) in supporting mission engineering problem formulation tasks.
We identify a relevant reference problem, a NASA space mission design challenge, and document ChatGPT-3.5's ability to perform stakeholder identification tasks.
We find that the LLM performs well in identifying human-focused stakeholders but poorly in recognizing external systems and environmental factors.
- Score: 0.0
- License:
- Abstract: Systems engineering (SE) is evolving with the availability of generative artificial intelligence (AI) and the demand for a systems-of-systems perspective, formalized under the purview of mission engineering (ME) in the US Department of Defense. Formulating ME problems is challenging because they are open-ended exercises that involve translation of ill-defined problems into well-defined ones that are amenable for engineering development. It remains to be seen to which extent AI could assist problem formulation objectives. To that end, this paper explores the quality and consistency of multi-purpose Large Language Models (LLM) in supporting ME problem formulation tasks, specifically focusing on stakeholder identification. We identify a relevant reference problem, a NASA space mission design challenge, and document ChatGPT-3.5's ability to perform stakeholder identification tasks. We execute multiple parallel attempts and qualitatively evaluate LLM outputs, focusing on both their quality and variability. Our findings portray a nuanced picture. We find that the LLM performs well in identifying human-focused stakeholders but poorly in recognizing external systems and environmental factors, despite explicit efforts to account for these. Additionally, LLMs struggle with preserving the desired level of abstraction and exhibit a tendency to produce solution specific outputs that are inappropriate for problem formulation. More importantly, we document great variability among parallel threads, highlighting that LLM outputs should be used with caution, ideally by adopting a stochastic view of their abilities. Overall, our findings suggest that, while ChatGPT could reduce some expert workload, its lack of consistency and domain understanding may limit its reliability for problem formulation tasks.
Related papers
- Active Task Disambiguation with LLMs [48.54945212561785]
We introduce a formal definition of task ambiguity and frame the problem of task disambiguation through the lens of Bayesian Experimental Design.
Our proposed approach of active task disambiguation enables LLM agents to generate targeted questions maximizing the information gain.
Empirical results demonstrate that this form of question selection leads to more effective task disambiguation in comparison to approaches relying on reasoning solely within the space of questions.
arXiv Detail & Related papers (2025-02-06T20:20:22Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - DetoxBench: Benchmarking Large Language Models for Multitask Fraud & Abuse Detection [15.933013428603152]
Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks.
We present a benchmark suite designed to assess the performance of LLMs in identifying and mitigating fraudulent and abusive language.
arXiv Detail & Related papers (2024-09-09T21:12:03Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
arXiv Detail & Related papers (2024-07-18T00:58:41Z) - PECC: Problem Extraction and Coding Challenges [3.287942619833188]
We introduce PECC, a novel benchmark derived from Advent Of Code (AoC) challenges and Project Euler.
Unlike conventional benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate code.
Results show varying model performance between narrative and neutral problems, with specific challenges in the Euler math-based subset.
arXiv Detail & Related papers (2024-04-29T15:02:14Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
This paper aims to evaluate the reasoning capacities of large language models (LLMs) in solving recent programming problems in Codeforces.
We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered.
Surprisingly, theThoughtived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems.
arXiv Detail & Related papers (2023-12-04T18:58:57Z) - Towards leveraging LLMs for Conditional QA [1.9649272351760063]
This study delves into the capabilities and limitations of Large Language Models (LLMs) in the challenging domain of conditional question-answering.
Our findings reveal that fine-tuned LLMs can surpass the state-of-the-art (SOTA) performance in some cases, even without fully encoding all input context.
These models encounter challenges in extractive question answering, where they lag behind the SOTA by over 10 points, and in mitigating the risk of injecting false information.
arXiv Detail & Related papers (2023-12-02T14:02:52Z) - Visual AI and Linguistic Intelligence Through Steerability and
Composability [0.0]
This study explores the capabilities of multimodal large language models (LLMs) in handling challenging multistep tasks that integrate language and vision.
The research presents a series of 14 creatively and constructively diverse tasks, ranging from AI Lego Designing to AI Satellite Image Analysis.
arXiv Detail & Related papers (2023-11-18T22:01:33Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
We explore the creative problem-solving capabilities of modern LLMs in a novel constrained setting.
We create MACGYVER, an automatically generated dataset consisting of over 1,600 real-world problems.
We present our collection to both LLMs and humans to compare and contrast their problem-solving abilities.
arXiv Detail & Related papers (2023-11-16T08:52:27Z) - When does In-context Learning Fall Short and Why? A Study on
Specification-Heavy Tasks [54.71034943526973]
In-context learning (ICL) has become the default method for using large language models (LLMs)
We find that ICL falls short of handling specification-heavy tasks, which are tasks with complicated and extensive task specifications.
We identify three primary reasons: inability to specifically understand context, misalignment in task schema comprehension with humans, and inadequate long-text understanding ability.
arXiv Detail & Related papers (2023-11-15T14:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.