Shortcuts to Analog Preparation of Non-Equilibrium Quantum Lakes
- URL: http://arxiv.org/abs/2502.03518v1
- Date: Wed, 05 Feb 2025 19:00:00 GMT
- Title: Shortcuts to Analog Preparation of Non-Equilibrium Quantum Lakes
- Authors: Nik O. Gjonbalaj, Rahul Sahay, Susanne F. Yelin,
- Abstract summary: Going further out of equilibrium via external driving can substantially accelerate the preparation of quantum lakes.
Counterdiabatic driving techniques -- originally designed to target the ground state -- instead naturally target lakes.
In the latter case, we construct sequences that accelerate preparation by almost an order of magnitude at fixed laser power.
- Score: 0.0
- License:
- Abstract: The dynamical preparation of exotic many-body quantum states is a persistent goal of analog quantum simulation, often limited by experimental coherence times. Recently, it was shown that fast, non-adiabatic Hamiltonian parameter sweeps can create finite-size ``lakes'' of quantum order in certain settings, independent of what is present in the ground state phase diagram. Here, we show that going further out of equilibrium via external driving can substantially accelerate the preparation of these quantum lakes. Concretely, when lakes can be prepared, existing counterdiabatic driving techniques -- originally designed to target the ground state -- instead naturally target the lakes state. We demonstrate this both for an illustrative single qutrit and a model of a $\mathbb{Z}_2$ Rydberg quantum spin liquid. In the latter case, we construct experimental drive sequences that accelerate preparation by almost an order of magnitude at fixed laser power. We conclude by using a Landau-Ginzburg model to provide a semi-classical picture for how our method accelerates state preparation.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum superpositions of current states in Rydberg-atom networks [0.0]
We propose a quantum optimal control protocol to engineer current states.
quantum states characterized by Rydberg excitations propagating in a given spatially closed tweezer networks.
arXiv Detail & Related papers (2024-03-05T18:39:01Z) - Quantum dimer models with Rydberg gadgets [0.0]
Rydberg blockade mechanism is an important ingredient in quantum simulators based on neutral atom arrays.
We propose a method to transform the underlying Rydberg blockade into more general constraints.
We show that these states can be dynamically prepared with high fidelity.
arXiv Detail & Related papers (2024-02-16T12:54:06Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Variational quantum simulation of the imaginary-time Lyapunov control
for accelerating the ground-state preparation [17.802280143175235]
We first propose a Lyapunov control-inspired strategy to accelerate the well-established imaginary-time method for ground-state preparation.
To make the method accessible in the noisy intermediate-scale quantum era, we propose a variational form of the algorithm that could work with shallow quantum circuits.
arXiv Detail & Related papers (2021-12-22T10:40:33Z) - Microscopic dynamics and an effective Landau-Zener transition in the
quasi-adiabatic preparation of spatially ordered states of Rydberg
excitations [0.0]
We study the adiabatic preparation of spatially-ordered Rydberg excitations of atoms in finite one-dimensional lattices by frequency-chirped laser pulses.
Our aims are to unravel the microscopic mechanism of the phase transition from the unexcited state of atoms to the antiferromagnetic-like state of Rydberg excitations.
arXiv Detail & Related papers (2021-11-29T14:32:30Z) - Dissipative preparation of fractional Chern insulators [3.3234256205258084]
We show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states.
We observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities.
arXiv Detail & Related papers (2021-08-23T18:00:02Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.