SoK: Benchmarking Poisoning Attacks and Defenses in Federated Learning
- URL: http://arxiv.org/abs/2502.03801v1
- Date: Thu, 06 Feb 2025 06:05:00 GMT
- Title: SoK: Benchmarking Poisoning Attacks and Defenses in Federated Learning
- Authors: Heyi Zhang, Yule Liu, Xinlei He, Jun Wu, Tianshuo Cong, Xinyi Huang,
- Abstract summary: Federated learning (FL) enables collaborative model training while preserving data privacy, but its decentralized nature exposes it to client-side data poisoning attacks (DPAs) and model poisoning attacks (MPAs)
This paper aims to provide a unified benchmark and analysis of defenses against DPAs and MPAs, clarifying the distinction between these two similar but slightly distinct domains.
- Score: 21.73177249075515
- License:
- Abstract: Federated learning (FL) enables collaborative model training while preserving data privacy, but its decentralized nature exposes it to client-side data poisoning attacks (DPAs) and model poisoning attacks (MPAs) that degrade global model performance. While numerous proposed defenses claim substantial effectiveness, their evaluation is typically done in isolation with limited attack strategies, raising concerns about their validity. Additionally, existing studies overlook the mutual effectiveness of defenses against both DPAs and MPAs, causing fragmentation in this field. This paper aims to provide a unified benchmark and analysis of defenses against DPAs and MPAs, clarifying the distinction between these two similar but slightly distinct domains. We present a systematic taxonomy of poisoning attacks and defense strategies, outlining their design, strengths, and limitations. Then, a unified comparative evaluation across FL algorithms and data heterogeneity is conducted to validate their individual and mutual effectiveness and derive key insights for design principles and future research. Along with the analysis, we frame our work to a unified benchmark, FLPoison, with high modularity and scalability to evaluate 15 representative poisoning attacks and 17 defense strategies, facilitating future research in this domain. Code is available at https://github.com/vio1etus/FLPoison.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Leveraging MTD to Mitigate Poisoning Attacks in Decentralized FL with Non-IID Data [9.715501137911552]
This paper proposes a framework that employs the Moving Target Defense (MTD) approach to bolster the robustness of DFL models.
By continuously modifying the attack surface of the DFL system, this framework aims to mitigate poisoning attacks effectively.
arXiv Detail & Related papers (2024-09-28T10:09:37Z) - Privacy Evaluation Benchmarks for NLP Models [16.158384185081932]
We present a privacy attack and defense evaluation benchmark in the field of NLP.
This benchmark supports a variety of models, datasets, and protocols, along with standardized modules for comprehensive evaluation of attacks and defense strategies.
We propose a chained framework for privacy attacks. Allowing a practitioner to chain multiple attacks to achieve a higher-level attack objective.
arXiv Detail & Related papers (2024-09-24T08:41:26Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with
Sparsification [24.053704318868043]
In model poisoning attacks, the attacker reduces the model's performance on targeted sub-tasks by uploading "poisoned" updates.
We introduce algoname, a novel defense that uses global top-k update sparsification and device-level clipping gradient to mitigate model poisoning attacks.
arXiv Detail & Related papers (2021-12-12T16:34:52Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.