論文の概要: Identify Critical KV Cache in LLM Inference from an Output Perturbation Perspective
- arxiv url: http://arxiv.org/abs/2502.03805v1
- Date: Thu, 06 Feb 2025 06:31:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:06.599921
- Title: Identify Critical KV Cache in LLM Inference from an Output Perturbation Perspective
- Title(参考訳): 出力摂動から見たLLM推論における臨界KVキャッシュの同定
- Authors: Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, S Kevin Zhou,
- Abstract要約: 重要なKVキャッシュエントリを識別するための摂動制約付き選択アルゴリズムを提案する。
提案アルゴリズムは,Llamaモデルにおいて,92%以上のアテンションヘッドにおける低出力摂動を実現する。
- 参考スコア(独自算出の注目度): 19.447729423696096
- License:
- Abstract: Large language models have revolutionized natural language processing but face significant challenges of high storage and runtime costs, due to the transformer architecture's reliance on self-attention, particularly the large Key-Value (KV) cache for long-sequence inference. Recent efforts to reduce KV cache size by pruning less critical entries based on attention weights remain empirical and lack formal grounding. This paper presents a formal study on identifying critical KV cache entries by analyzing attention output perturbation. Our analysis reveals that, beyond attention weights, the value states within KV entries and pretrained parameter matrices are also crucial. Based on this, we propose a perturbation-constrained selection algorithm that optimizes the worst-case output perturbation to identify critical entries. Evaluations on the Needle-in-a-Haystack test and Longbench benchmark show our algorithm enhances state-of-the-art cache eviction methods. Further empirical analysis confirms that our algorithm achieves lower output perturbations in over 92% attention heads in Llama model, thereby providing a significant improvement over existing methods.
- Abstract(参考訳): 大規模な言語モデルは自然言語処理に革命をもたらしたが、トランスフォーマーアーキテクチャが自己アテンション、特に長いシーケンス推論のためのキーバリュー(KV)キャッシュに依存しているため、高いストレージとランタイムコストの重大な課題に直面している。
注意重みに基づいて重要度を低く抑えることでKVキャッシュサイズを減らそうとする最近の取り組みは実証的であり、形式的な接地が欠如している。
本稿では,注意出力の摂動を解析し,重要なKVキャッシュエントリの同定に関する公式な研究を行う。
分析の結果,KV成分と事前学習パラメータ行列の値状態も注意重みを超えて重要であることが明らかとなった。
そこで本研究では,最短ケースの出力摂動を最適化した摂動制約付き選択アルゴリズムを提案する。
Needle-in-a-HaystackテストとLongbenchベンチマークによる評価は、我々のアルゴリズムが最先端のキャッシュ消去手法を強化することを示している。
さらに実験解析により,Llamaモデルにおいて,92%以上の注意領域における低出力摂動が達成され,既存の手法よりも大幅に改善されていることを確認した。
関連論文リスト
- AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
本稿では,最初の学習に基づくクリティカルトークン識別手法であるAttentionPredictorを提案する。
注意予測器は、無視可能なメモリを消費しながら、注意スコアを正確に予測する。
また、トークン時間オーバーヘッドを隠蔽してデコードステージを高速化する、クロストークンクリティカルキャッシュプリフェッチフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - Cross-Self KV Cache Pruning for Efficient Vision-Language Inference [19.062950348441426]
KVキャッシュプルーニングは、長文自動回帰生成におけるメモリと計算コストを削減するための有望な手法として登場した。
我々は、注意スコアをモダリティ内注意(同じモダリティ)とモダリティ間注意(全体モダリティ)に分解することを提案する。
最終的なトレーニング不要手法である textbfCross-textbfSelf textbfPruning (CSP) は、完全なKVキャッシュを持つモデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-05T22:47:17Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
NLPの現在のプラクティスは、コード生成タスクにおいて、不正確な、あるいは幻覚を引き起こす可能性のある、スパースアテンションを使用することが多い。
本稿では,コンテキスト情報を抽出・圧縮するトークン・アンカー・アテンションを特徴とする新しいアプローチであるAnchorCoderを提案する。
モデルの性能の大部分を保ちながら、KVキャッシュの要求を大幅に削減できる(少なくとも70%)。
論文 参考訳(メタデータ) (2024-11-11T02:47:05Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - CItruS: Chunked Instruction-aware State Eviction for Long Sequence Modeling [52.404072802235234]
本稿では,下流タスクに有用な注目度を隠蔽状態の消去プロセスに統合する新しいモデリング手法であるChunked Instruction-Aware State Eviction(CItruS)を紹介する。
トレーニング不要な手法は,メモリ予算が同じ条件下で,複数の強いベースライン上での長いシーケンス理解および検索タスクにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-17T18:34:58Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - No Token Left Behind: Reliable KV Cache Compression via Importance-Aware
Mixed Precision Quantization [31.806112535762367]
キーバリューキャッシングは、生成型大規模言語モデル(LLM)の推論速度とスループットを加速する重要な技術となっている。
論文 参考訳(メタデータ) (2024-02-28T06:34:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。