論文の概要: Rule-Based Modeling of Low-Dimensional Data with PCA and Binary Particle Swarm Optimization (BPSO) in ANFIS
- arxiv url: http://arxiv.org/abs/2502.03895v1
- Date: Thu, 06 Feb 2025 09:13:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:37.969662
- Title: Rule-Based Modeling of Low-Dimensional Data with PCA and Binary Particle Swarm Optimization (BPSO) in ANFIS
- Title(参考訳): ANFISにおけるPCAとBPSOを用いた低次元データのルールベースモデリング
- Authors: Afnan Al-Ali, Uvais Qidwai,
- Abstract要約: ファジィルールに基づくシステムは、低次元領域でデータを解釈し、透明性と解釈可能性を提供する。
ディープラーニングは複雑なタスクでは優れているが、スパース、非構造化、低次元のデータでは過度に適合する傾向がある。
この解釈可能性は、医療や金融といった分野において重要である。
- 参考スコア(独自算出の注目度): 0.29465623430708915
- License:
- Abstract: Fuzzy rule-based systems interpret data in low-dimensional domains, providing transparency and interpretability. In contrast, deep learning excels in complex tasks like image and speech recognition but is prone to overfitting in sparse, unstructured, or low-dimensional data. This interpretability is crucial in fields like healthcare and finance. Traditional rule-based systems, especially ANFIS with grid partitioning, suffer from exponential rule growth as dimensionality increases. We propose a strategic rule-reduction model that applies Principal Component Analysis (PCA) on normalized firing strengths to obtain linearly uncorrelated components. Binary Particle Swarm Optimization (BPSO) selectively refines these components, significantly reducing the number of rules while preserving precision in decision-making. A custom parameter update mechanism fine-tunes specific ANFIS layers by dynamically adjusting BPSO parameters, avoiding local minima. We validated our approach on standard UCI respiratory, keel classification, regression datasets, and a real-world ischemic stroke dataset, demonstrating adaptability and practicality. Results indicate fewer rules, shorter training, and high accuracy, underscoring the methods effectiveness for low-dimensional interpretability and complex data scenarios. This synergy of fuzzy logic and optimization fosters robust solutions. Our method contributes a powerful framework for interpretable AI in multiple domains. It addresses dimensionality, ensuring a rule base.
- Abstract(参考訳): ファジィルールに基づくシステムは、低次元領域でデータを解釈し、透明性と解釈可能性を提供する。
対照的に、ディープラーニングは画像や音声認識のような複雑なタスクでは優れているが、スパース、非構造化、低次元のデータでは過度に適合する傾向がある。
この解釈可能性は、医療や金融といった分野において重要である。
従来のルールベースのシステム、特にグリッド分割を持つANFISは、次元が増加するにつれて指数関数的なルール成長に悩まされる。
本稿では, 主成分分析(PCA)を正則化火力に応用し, 線形非相関成分を得る戦略的規則推論モデルを提案する。
バイナリ粒子群最適化(BPSO)は、これらのコンポーネントを選択的に洗練し、意思決定の精度を維持しながらルールの数を大幅に削減する。
BPSOパラメータを動的に調整し、ローカルなミニマを避けることで、特定のANFIS層を微調整するカスタムパラメータ更新機構。
我々は,標準UCI呼吸,ケエル分類,回帰データセット,および実世界の虚血性脳卒中データセットに対するアプローチを検証し,適応性と実用性を示した。
その結果、より少ないルール、短いトレーニング、高精度で、低次元の解釈可能性と複雑なデータシナリオに対する手法の有効性が示された。
このファジィ論理と最適化の相乗効果は堅牢な解を促進する。
提案手法は,複数のドメインでAIを解釈するための強力なフレームワークを提供する。
ディメンタリティに対処し、ルールベースを保証する。
関連論文リスト
- Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization [2.983818075226378]
本稿では,初期コンポーネント不安定時の適応重み係数更新を統合する新しいRPCAモデルを提案する。
提案手法は既存の非インスパイアされた正規化手法よりも優れた性能と効率を提供する。
論文 参考訳(メタデータ) (2024-12-19T08:31:42Z) - Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting [57.487936697747024]
実世界のデータ制約から生じる一般的なネットワーク推論問題は、その時間集約された隣接行列から動的ネットワークを推論する方法である。
本稿では,ネットワーク構造に対する最小限の変更の下でIPFの収束を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-28T20:24:56Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Variable Importance in High-Dimensional Settings Requires Grouping [19.095605415846187]
Conditional Permutation Importance (CPI)は、そのような場合のPIの制限をバイパスする。
クラスタリングまたはいくつかの事前知識を介して統計的に変数をグループ化すると、ある程度のパワーバックが得られる。
重み付けにより拡張された手法は,高相関なグループであっても,型Iエラーを制御可能であることを示す。
論文 参考訳(メタデータ) (2023-12-18T00:21:47Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
物理インフォームドニューラルネットワーク(PINN)は、前方問題を解決する際に大量のデータを生成するのを避けることができる。
動的に構成された PINN-based Topology Optimization (DCPINN-TO) 法を提案する。
変位予測と最適化結果の精度は,DCPINN-TO法が効率的かつ効率的であることを示している。
論文 参考訳(メタデータ) (2023-12-12T05:35:30Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
本研究では,実環境下でのフルフィールド変位と大域力データからモデルのキャリブレーションを行うためのPINNを提案する。
拡張PINNは、実験的な1次元データと合成フルフィールド変位データの両方から材料パラメータを識別できることを実証した。
論文 参考訳(メタデータ) (2022-12-15T11:01:32Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。