論文の概要: Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization
- arxiv url: http://arxiv.org/abs/2412.14629v1
- Date: Thu, 19 Dec 2024 08:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:32:48.666260
- Title: Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization
- Title(参考訳): 適応重み付き最小二乗と低ランク行列分解に基づくロバストPCA
- Authors: Kexin Li, You-wei Wen, Xu Xiao, Mingchao Zhao,
- Abstract要約: 本稿では,初期コンポーネント不安定時の適応重み係数更新を統合する新しいRPCAモデルを提案する。
提案手法は既存の非インスパイアされた正規化手法よりも優れた性能と効率を提供する。
- 参考スコア(独自算出の注目度): 2.983818075226378
- License:
- Abstract: Robust Principal Component Analysis (RPCA) is a fundamental technique for decomposing data into low-rank and sparse components, which plays a critical role for applications such as image processing and anomaly detection. Traditional RPCA methods commonly use $\ell_1$ norm regularization to enforce sparsity, but this approach can introduce bias and result in suboptimal estimates, particularly in the presence of significant noise or outliers. Non-convex regularization methods have been proposed to mitigate these challenges, but they tend to be complex to optimize and sensitive to initial conditions, leading to potential instability in solutions. To overcome these challenges, in this paper, we propose a novel RPCA model that integrates adaptive weighted least squares (AWLS) and low-rank matrix factorization (LRMF). The model employs a {self-attention-inspired} mechanism in its weight update process, allowing the weight matrix to dynamically adjust and emphasize significant components during each iteration. By employing a weighted F-norm for the sparse component, our method effectively reduces bias while simplifying the computational process compared to traditional $\ell_1$-norm-based methods. We use an alternating minimization algorithm, where each subproblem has an explicit solution, thereby improving computational efficiency. Despite its simplicity, numerical experiments demonstrate that our method outperforms existing non-convex regularization approaches, offering superior performance and stability, as well as enhanced accuracy and robustness in practical applications.
- Abstract(参考訳): ロバスト主成分分析(RPCA)は、データを低ランクかつスパースなコンポーネントに分解する基本的な技術であり、画像処理や異常検出などのアプリケーションにおいて重要な役割を果たす。
従来のRPCAメソッドは、パリティを強制するために、通常$\ell_1$ノルム正規化を使用するが、このアプローチはバイアスを導入し、特に大きなノイズや外れ値が存在する場合に、最適以下の見積もりをもたらす。
非凸正則化法はこれらの課題を軽減するために提案されているが、初期条件に敏感な最適化が複雑であり、解の不安定性を引き起こす傾向がある。
本稿では,適応重み付き最小二乗(AWLS)と低ランク行列分解(LRMF)を統合した新しいRPCAモデルを提案する。
このモデルでは、重み更新プロセスに {self-attention-inspired} メカニズムを導入し、重み行列を動的に調整し、各イテレーションの間に重要なコンポーネントを強調します。
スパース成分に重み付きFノルムを用いることで,従来の$\ell_1$-norm法と比較して計算処理を簡素化し,バイアスを効果的に低減する。
我々は、各サブプロブレムが明示的な解を持ち、計算効率を向上する交互最小化アルゴリズムを用いる。
その単純さにもかかわらず、数値実験により、本手法は既存の非凸正則化手法よりも優れ、性能と安定性が向上し、実用的な応用における精度と堅牢性も向上することを示した。
関連論文リスト
- Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion [14.542166904874147]
similarity Completion Matrixは多くの機械学習タスクの中核にある基本的なツールとして機能する。
この問題に対処するために、類似行列理論(SMC)法が提案されているが、それらは複雑である。
提案手法は,PSD特性を解析して推定プロセスを導出し,低ランク解を保証するために非低ランク正規化器を組み込む2つの新しい,スケーラブルで効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-29T04:27:23Z) - Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)に適した動的,エラーバウンドな階層行列 (H-matrix) 圧縮手法を提案する。
提案手法は,ニューラル・タンジェント・カーネル(NTK)の本質的性質を保ちながら,大規模物理モデルにおける計算複雑性とメモリ要求を低減させる。
実験により, この手法は, 高精度を維持し, 一般化能力を向上させることにより, Singular Value Decomposition (SVD) やプルーニング, 量子化などの従来の圧縮手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-11T05:55:51Z) - Adaptive pruning-based Newton's method for distributed learning [14.885388389215587]
本稿では,分散適応ニュートン学習(textttDANL)という,新規で効率的なアルゴリズムを提案する。
textttDANLは、利用可能なリソースに効率よく適応し、高い効率を維持しながら、線形収束率を達成する。
実験により、textttDANLは、効率的な通信と異なるデータセット間の強い性能で線形収束を実現することが示された。
論文 参考訳(メタデータ) (2023-08-20T04:01:30Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Automatic selection of basis-adaptive sparse polynomial chaos expansions
for engineering applications [0.0]
スパースカオス展開のための3つの最新技術に基づく基礎適応的アプローチについて述べる。
我々は,大規模な計算モデルに対して,大域的近似精度の観点から広範なベンチマークを行う。
クロスバリデーションエラーによって導かれる新しい解法と基底適応性選択スキームを導入する。
論文 参考訳(メタデータ) (2020-09-10T12:13:57Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。