論文の概要: Technical Report: Generating the WEB-IDS23 Dataset
- arxiv url: http://arxiv.org/abs/2502.03909v1
- Date: Thu, 06 Feb 2025 09:33:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:53.184289
- Title: Technical Report: Generating the WEB-IDS23 Dataset
- Title(参考訳): 技術報告:WEB-IDS23データセットの生成
- Authors: Eric Lanfer, Dominik Brockmann, Nils Aschenbruck,
- Abstract要約: いくつかの広く使われているデータセットは、十分にきめ細かいラベルを含まない。
モジュラートラフィックジェネレータは 様々な良質で悪意のあるトラフィックをシミュレートできます
データセットは、82のフローレベルの特徴と21のきめ細かいラベルを持つ1200万以上のサンプルをキャプチャする。
- 参考スコア(独自算出の注目度): 1.1101390076342181
- License:
- Abstract: Anomaly-based Network Intrusion Detection Systems (NIDS) require correctly labelled, representative and diverse datasets for an accurate evaluation and development. However, several widely used datasets do not include labels which are fine-grained enough and, together with small sample sizes, can lead to overfitting issues that also remain undetected when using test data. Additionally, the cybersecurity sector is evolving fast, and new attack mechanisms require the continuous creation of up-to-date datasets. To address these limitations, we developed a modular traffic generator that can simulate a wide variety of benign and malicious traffic. It incorporates multiple protocols, variability through randomization techniques and can produce attacks along corresponding benign traffic, as it occurs in real-world scenarios. Using the traffic generator, we create a dataset capturing over 12 million samples with 82 flow-level features and 21 fine-grained labels. Additionally, we include several web attack types which are often underrepresented in other datasets.
- Abstract(参考訳): Anomaly-based Network Intrusion Detection Systems (NIDS) は、正確な評価と開発のために、正しくラベル付けされた、代表的で多様なデータセットを必要とする。
しかし、広く使われているいくつかのデータセットには、十分にきめ細かいラベルが含まれておらず、小さなサンプルサイズと共に、テストデータを使用する際にも検出されない問題に過度に適合する可能性がある。
さらに、サイバーセキュリティセクターは急速に進化しており、新しい攻撃メカニズムは最新のデータセットを継続的に作成する必要がある。
これらの制約に対処するために,多様な良性および悪意のあるトラフィックをシミュレートできるモジュール型トラフィックジェネレータを開発した。
ランダム化技術による複数のプロトコルと可変性を備えており、実際のシナリオで発生するように、対応する良性トラフィックに沿って攻撃を生成することができる。
トラフィックジェネレータを使用して、82のフローレベルの特徴と21のきめ細かいラベルを持つ1200万以上のサンプルを収集するデータセットを作成します。
さらに、他のデータセットで表現されることが多いWeb攻撃タイプもいくつか含まれています。
関連論文リスト
- A Novel Approach to Network Traffic Analysis: the HERA tool [0.0]
サイバーセキュリティの脅威は、堅牢なネットワーク侵入検知システムの必要性を浮き彫りにする。
これらのシステムは、パターンを検出し、脅威を予測する機械学習モデルをトレーニングするためのデータセットに大きく依存している。
HERAは、フローファイルとラベル付きまたは未ラベルのデータセットをユーザ定義の機能で生成する、新たなオープンソースツールである。
論文 参考訳(メタデータ) (2025-01-13T16:47:52Z) - Unleashing the Power of Unlabeled Data: A Self-supervised Learning Framework for Cyber Attack Detection in Smart Grids [6.5023425872686085]
各種のサイバー攻撃を検知・識別する自己教師型学習ベースフレームワークを提案する。
提案するフレームワークは,大量のラベル付きラベル付きデータに頼らず,膨大なラベルなしデータを利用する。
実験の結果,37台のバスを用いた5エリアの電力グリッドシステムにおいて,既存手法よりも優れた性能を示すことができた。
論文 参考訳(メタデータ) (2024-05-22T20:04:52Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
既存のデータセットは、しばしば不足しており、必要な多様性と現在のネットワーク環境との整合性が欠如している。
本稿では,これらの課題を克服するための新しい包括的データセットであるTII-SSRC-23を紹介する。
論文 参考訳(メタデータ) (2023-09-14T05:23:36Z) - Fusing Pseudo Labels with Weak Supervision for Dynamic Traffic Scenarios [0.0]
我々は、異種データセットで訓練されたオブジェクト検出モデルから擬似ラベルをアマルガメートする弱い教師付きラベル統一パイプラインを導入する。
我々のパイプラインは、異なるデータセットからのラベルの集約、バイアスの修正、一般化の強化を通じて、統一されたラベル空間をエンゲージする。
我々は,統合ラベル空間を用いた単独物体検出モデルを再学習し,動的交通シナリオに精通した弾力性のあるモデルを構築した。
論文 参考訳(メタデータ) (2023-08-30T11:33:07Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Anomaly Detection Dataset for Industrial Control Systems [1.2234742322758418]
産業制御システム(ICS)はサイバー攻撃の対象となり、ますます脆弱になりつつある。
機械学習アルゴリズムを評価するのに適したデータセットがないことは、課題である。
本稿では、教師付きおよび教師なしMLベースのIDS評価のためのネットワークデータとプロセス状態変数ログを提供する「ICS-Flow」データセットを提案する。
論文 参考訳(メタデータ) (2023-05-11T14:52:19Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Unsupervised Person Re-Identification with Wireless Positioning under
Weak Scene Labeling [131.18390399368997]
本稿では、弱いシーンラベリングの下で、視覚データと無線位置決めトラジェクトリの両方を用いて、教師なしの人物再識別を探索することを提案する。
具体的には、視覚データと無線情報の相補性をモデル化した、新しい教師なしマルチモーダルトレーニングフレームワーク(UMTF)を提案する。
我々のUMTFには、MMDA(Multimodal Data Association Strategy)とMMGN(Multimodal Graph Neural Network)が含まれている。
論文 参考訳(メタデータ) (2021-10-29T08:25:44Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。