論文の概要: Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions
- arxiv url: http://arxiv.org/abs/2502.03965v1
- Date: Thu, 06 Feb 2025 10:57:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:59.666050
- Title: Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions
- Title(参考訳): 時間的介入を可能にする知的障害スコアの早期推定のための革新的枠組み
- Authors: Himanshi Singh, Sadhana Tiwari, Sonali Agarwal, Ritesh Chandra, Sanjay Kumar Sonbhadra, Vrijendra Singh,
- Abstract要約: 本稿では,PTSDとうつ病の自動分類のための高度なマルチモーダル深層学習システムについて述べる。
提案手法は, うつ病では92%, PTSDでは93%の分類精度を達成し, 従来の単潮流法よりも優れていた。
- 参考スコア(独自算出の注目度): 0.9297614330263184
- License:
- Abstract: Individual's general well-being is greatly impacted by mental health conditions including depression and Post-Traumatic Stress Disorder (PTSD), underscoring the importance of early detection and precise diagnosis in order to facilitate prompt clinical intervention. An advanced multimodal deep learning system for the automated classification of PTSD and depression is presented in this paper. Utilizing textual and audio data from clinical interview datasets, the method combines features taken from both modalities by combining the architectures of LSTM (Long Short Term Memory) and BiLSTM (Bidirectional Long Short-Term Memory).Although text features focus on speech's semantic and grammatical components; audio features capture vocal traits including rhythm, tone, and pitch. This combination of modalities enhances the model's capacity to identify minute patterns connected to mental health conditions. Using test datasets, the proposed method achieves classification accuracies of 92% for depression and 93% for PTSD, outperforming traditional unimodal approaches and demonstrating its accuracy and robustness.
- Abstract(参考訳): 個人の一般的な幸福感は、うつ病や外傷後ストレス障害(PTSD)などの精神状態に大きく影響され、早期発見の重要性と臨床介入を促進するための正確な診断の重要性が強調されている。
本稿では,PTSDとうつ病の自動分類のための高度なマルチモーダル深層学習システムについて述べる。
臨床面接データセットからのテキストデータと音声データを利用して、LSTM(Long Short Term Memory)とBiLSTM(Bidirectional Long Short-Term Memory)のアーキテクチャを組み合わせることで、両方のモダリティから得られる特徴を組み合わせる。
テキストの特徴は音声のセマンティクスと文法的要素に焦点が当てられているが、音声の特徴はリズム、トーン、ピッチなどの発声特性を捉えている。
このモダリティの組み合わせは、精神的な健康状態に関連する微小パターンを識別するモデルの能力を高める。
テストデータセットを用いて,抑うつに対する92%,PTSDに対する93%の分類精度を達成し,従来の単調なアプローチよりも優れ,精度と堅牢性を示す。
関連論文リスト
- Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
神経認知障害(NCD)の早期発見は、時間的介入と疾患管理に不可欠である。
伝統的な物語分析は、しばしば単語の使用法や構文など、ミクロ構造における局所的な指標に焦点を当てる。
本稿では,話題の変化,時間的ダイナミクス,物語の時間的コヒーレンスを分析することによって,特定の認知的・言語的課題を解明することを提案する。
論文 参考訳(メタデータ) (2025-01-07T12:16:26Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech [0.0]
本研究では、ウェーブレット抽出機能に対する畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)モデルの応用と、Mel- frequency Cepstral Coefficients(MFCC)による音声音声からの感情検出について検討する。
データ強化技術,特徴抽出,正規化,モデルトレーニングを行い,感情状態の分類においてモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-12-12T22:55:11Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
本研究は, 被験者と患者との対話の分析を通じて, 独特の音声パターンを識別するための包括的アプローチを提案する。
我々は,40の音声関連特徴を抽出し,周波数,ゼロクロス速度,エネルギー,スペクトル特性,メル周波数ケプストラル係数(MFCC),バランスに分類した。
分類モデルはASDと非ASDを区別することを目的としており、精度は87.75%である。
論文 参考訳(メタデータ) (2024-05-03T02:59:15Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
記憶障害の症状の早期発見は、集団の健康確保に重要な役割を担っている。
臨床環境における標準化された音声テストの欠如は、自然音声言語を解析するための自動機械学習技術の開発にますます重点を置いている。
この研究は特徴選択に関するアプローチを示し、ジュネーブの最小音響パラメータセットと相対音声停止から診断に必要な重要な特徴を自動的に選択することを可能にする。
論文 参考訳(メタデータ) (2024-02-02T17:06:03Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
3次元構造を持つ新しい意味的特徴前処理手法を提案する。
強化されたセマンティック機能により、精神障害を予測および分類するために機械学習モデルを訓練する。
提案手法は,7つのベンチマークモデルと比較して,大幅な性能向上を示した。
論文 参考訳(メタデータ) (2023-11-09T00:15:06Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
本稿では、うつ病と不安スクリーニングツールの確立したしきい値に基づいてラベル付けされた、心的苦痛分析オーディオデータセットDEPACを紹介する。
この大きなデータセットは、個人ごとの複数の音声タスクと、関連する人口統計情報から構成される。
人間の音声における精神疾患の徴候の同定に有効な,手作業による音響的特徴と言語的特徴からなる特徴セットを提案する。
論文 参考訳(メタデータ) (2023-06-20T12:21:06Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。