論文の概要: Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech
- arxiv url: http://arxiv.org/abs/2412.10469v1
- Date: Thu, 12 Dec 2024 22:55:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:15.927082
- Title: Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech
- Title(参考訳): 音声音声の感情検出とメンタルヘルス評価のためのメル周波数ケプストラム係数とウェーブレットに基づく音声信号処理の比較分析
- Authors: Idoko Agbo, Dr Hoda El-Sayed, M. D Kamruzzan Sarker,
- Abstract要約: 本研究では、ウェーブレット抽出機能に対する畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)モデルの応用と、Mel- frequency Cepstral Coefficients(MFCC)による音声音声からの感情検出について検討する。
データ強化技術,特徴抽出,正規化,モデルトレーニングを行い,感情状態の分類においてモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The intersection of technology and mental health has spurred innovative approaches to assessing emotional well-being, particularly through computational techniques applied to audio data analysis. This study explores the application of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models on wavelet extracted features and Mel-frequency Cepstral Coefficients (MFCCs) for emotion detection from spoken speech. Data augmentation techniques, feature extraction, normalization, and model training were conducted to evaluate the models' performance in classifying emotional states. Results indicate that the CNN model achieved a higher accuracy of 61% compared to the LSTM model's accuracy of 56%. Both models demonstrated better performance in predicting specific emotions such as surprise and anger, leveraging distinct audio features like pitch and speed variations. Recommendations include further exploration of advanced data augmentation techniques, combined feature extraction methods, and the integration of linguistic analysis with speech characteristics for improved accuracy in mental health diagnostics. Collaboration for standardized dataset collection and sharing is recommended to foster advancements in affective computing and mental health care interventions.
- Abstract(参考訳): テクノロジーとメンタルヘルスの交わりは、特に音声データ分析に適用された計算技術を通じて、感情的幸福を評価する革新的なアプローチを刺激してきた。
本研究では、ウェーブレット抽出機能に対する畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)モデルの応用と、Mel- frequency Cepstral Coefficients(MFCC)による音声音声からの感情検出について検討する。
データ強化技術,特徴抽出,正規化,モデルトレーニングを行い,感情状態の分類においてモデルの性能を評価する。
その結果,CNNモデルの精度はLSTMモデルの精度が56%よりも61%高かった。
どちらのモデルも、サプライズや怒りなどの特定の感情を予測し、ピッチや速度の変化といった異なるオーディオ機能を活用する上で、より良いパフォーマンスを示した。
勧告には、高度なデータ強化手法のさらなる探索、特徴抽出の併用、言語分析と音声特性の統合によるメンタルヘルス診断の精度向上などが含まれる。
標準化されたデータセット収集と共有のためのコラボレーションは、感情コンピューティングとメンタルヘルスの介入の進歩を促進するために推奨される。
関連論文リスト
- Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions [0.9297614330263184]
本稿では,PTSDとうつ病の自動分類のための高度なマルチモーダル深層学習システムについて述べる。
提案手法は, うつ病では92%, PTSDでは93%の分類精度を達成し, 従来の単潮流法よりも優れていた。
論文 参考訳(メタデータ) (2025-02-06T10:57:10Z) - Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
本研究は,脳波の特徴推定に新たなアプローチを導入し,深層学習モデルの重みを利用してその関連を探索する。
視覚変換器とEEGNetから生成したアテンションマップは,従来の研究結果と一致した特徴を効果的に同定できることを実証する。
ViTsを用いたMel-Spectrogramの適用により、時間および周波数関連脳波特性の分解能が向上する。
論文 参考訳(メタデータ) (2024-09-27T22:52:31Z) - NeuroSpex: Neuro-Guided Speaker Extraction with Cross-Modal Attention [47.8479647938849]
本稿では,聴取者の脳波応答を唯一の補助的基準キューとして用いた神経誘導型話者抽出モデルであるNeuroSpexを提案する。
我々は,注目情報を捕捉する新しい脳波信号エンコーダを提案し,また,音声特徴表現を強化するためのクロスアテンション(CA)機構を提案する。
論文 参考訳(メタデータ) (2024-09-04T07:33:01Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
パーキンソン病(英: Parkinson's Disease、PD)は、音声を含む運動機能と非運動機能の両方に大きな影響を及ぼす進行性神経変性疾患である。
本稿では,音声データを用いたPD認識手法の総合的なレビューを行い,機械学習とデータ駆動アプローチの進歩を強調した。
ロジスティック回帰、SVM、ニューラルネットワークなど、さまざまな分類アルゴリズムが検討されている。
以上の結果から,特定の音響特性と高度な機械学習技術は,PDと健常者の間で効果的に区別できることが示唆された。
論文 参考訳(メタデータ) (2024-07-22T23:24:02Z) - EmoDiarize: Speaker Diarization and Emotion Identification from Speech
Signals using Convolutional Neural Networks [0.0]
本研究では,音声認識における深層学習技術の統合について検討する。
既存の話者ダイアリゼーションパイプラインと、畳み込みニューラルネットワーク(CNN)上に構築された感情識別モデルを組み合わせたフレームワークを導入する。
提案モデルでは,63%の非重み付き精度が得られ,音声信号中の感情状態を正確に同定する上で,顕著な効率性を示した。
論文 参考訳(メタデータ) (2023-10-19T16:02:53Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。