論文の概要: PINT: Physics-Informed Neural Time Series Models with Applications to Long-term Inference on WeatherBench 2m-Temperature Data
- arxiv url: http://arxiv.org/abs/2502.04018v1
- Date: Thu, 06 Feb 2025 12:19:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:57.292632
- Title: PINT: Physics-Informed Neural Time Series Models with Applications to Long-term Inference on WeatherBench 2m-Temperature Data
- Title(参考訳): PINT:物理インフォームドニューラル時系列モデルとWeatherBench 2m温度データの長期推定への応用
- Authors: Keon Vin Park, Jisu Kim, Jaemin Seo,
- Abstract要約: PINT(Physics-Informed Neural Time Series Models)は、物理制約をニューラルネットワークの時系列モデルに統合するフレームワークである。
ERA5 WeatherBenchデータセットにPINTを適用し,2m温度データの長期予測に着目した。
- 参考スコア(独自算出の注目度): 2.6842667886955196
- License:
- Abstract: This paper introduces PINT (Physics-Informed Neural Time Series Models), a framework that integrates physical constraints into neural time series models to improve their ability to capture complex dynamics. We apply PINT to the ERA5 WeatherBench dataset, focusing on long-term forecasting of 2m-temperature data. PINT incorporates the Simple Harmonic Oscillator Equation as a physics-informed prior, embedding its periodic dynamics into RNN, LSTM, and GRU architectures. This equation's analytical solutions (sine and cosine functions) facilitate rigorous evaluation of the benefits of incorporating physics-informed constraints. By benchmarking against a linear regression baseline derived from its exact solutions, we quantify the impact of embedding physical principles in data-driven models. Unlike traditional time series models that rely on future observations, PINT is designed for practical forecasting. Using only the first 90 days of observed data, it iteratively predicts the next two years, addressing challenges posed by limited real-time updates. Experiments on the WeatherBench dataset demonstrate PINT's ability to generalize, capture periodic trends, and align with physical principles. This study highlights the potential of physics-informed neural models in bridging machine learning and interpretable climate applications. Our models and datasets are publicly available on GitHub: https://github.com/KV-Park.
- Abstract(参考訳): 本稿では,PINT(Physics-Informed Neural Time Series Models)について紹介する。
ERA5 WeatherBenchデータセットにPINTを適用し,2m温度データの長期予測に着目した。
PINTは単純な調和振動子方程式を物理インフォームドプリエントとして組み込んでおり、周期力学をRNN、LSTM、GRUアーキテクチャに組み込んでいる。
この方程式の分析解(正弦関数と余弦関数)は、物理学で表された制約を組み込む利点の厳密な評価を促進する。
正確な解から導かれる線形回帰ベースラインに対してベンチマークを行うことで、データ駆動モデルに物理原理を埋め込むことの影響を定量化する。
将来の観測に依存する従来の時系列モデルとは異なり、PINTは実用的な予測のために設計されている。
観測されたデータの最初の90日だけを使用して、次の2年間を反復的に予測し、リアルタイム更新の制限によって引き起こされる課題に対処する。
WeatherBenchデータセットの実験では、PINTが周期的トレンドを一般化し、キャプチャし、物理原理と整合する能力を示している。
この研究は、ブリッジング機械学習と解釈可能な気候応用における物理インフォームド・ニューラルモデルの可能性を強調した。
私たちのモデルとデータセットはGitHubで公開されています。
関連論文リスト
- Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes and Atmospheric Dynamics [41.00712556599439]
私たちは、最も顕著なディープラーニング天気予報モデルと背骨を比較し、対比します。
合成2次元非圧縮性ナビエストークスと実世界の気象動態を予測してこれを達成した。
365日間の長距離気象観測では、球面データ表現を定式化するアーキテクチャにおいて、優れた安定性と物理的健全性を観察する。
論文 参考訳(メタデータ) (2024-07-19T08:59:00Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting [1.1602089225841632]
提案手法は,コンテキストトラックとメイントラックという,同時に訓練された2つのトラックから構成される。
RNNアーキテクチャは、階層的な拡張を積み重ねた複数の繰り返し層で構成され、最近提案された注意的再帰細胞を備えている。
このモデルは点予測と予測間隔の両方を生成する。
論文 参考訳(メタデータ) (2022-12-18T07:42:48Z) - Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting [0.0]
歴史的データに基づく生産予測は、炭化水素資源の開発に不可欠な価値を提供する。
生産予測のためのグリッドフリーな物理インフォームドグラフニューラルネットワーク(PI-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T23:28:40Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。