論文の概要: Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting
- arxiv url: http://arxiv.org/abs/2209.11885v1
- Date: Fri, 23 Sep 2022 23:28:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 17:52:58.192882
- Title: Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting
- Title(参考訳): 時空間生産予測のための物理インフォームドグラフニューラルネットワーク
- Authors: Wendi Liu, Michael J. Pyrcz
- Abstract要約: 歴史的データに基づく生産予測は、炭化水素資源の開発に不可欠な価値を提供する。
生産予測のためのグリッドフリーな物理インフォームドグラフニューラルネットワーク(PI-GNN)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Production forecast based on historical data provides essential value for
developing hydrocarbon resources. Classic history matching workflow is often
computationally intense and geometry-dependent. Analytical data-driven models
like decline curve analysis (DCA) and capacitance resistance models (CRM)
provide a grid-free solution with a relatively simple model capable of
integrating some degree of physics constraints. However, the analytical
solution may ignore subsurface geometries and is appropriate only for specific
flow regimes and otherwise may violate physics conditions resulting in degraded
model prediction accuracy. Machine learning-based predictive model for time
series provides non-parametric, assumption-free solutions for production
forecasting, but are prone to model overfit due to training data sparsity;
therefore may be accurate over short prediction time intervals.
We propose a grid-free, physics-informed graph neural network (PI-GNN) for
production forecasting. A customized graph convolution layer aggregates
neighborhood information from historical data and has the flexibility to
integrate domain expertise into the data-driven model. The proposed method
relaxes the dependence on close-form solutions like CRM and honors the given
physics-based constraints. Our proposed method is robust, with improved
performance and model interpretability relative to the conventional CRM and GNN
baseline without physics constraints.
- Abstract(参考訳): 歴史的データに基づく生産予測は、炭化水素資源の開発に不可欠な価値を提供する。
古典的な履歴マッチングワークフローは、しばしば計算量と幾何学に依存します。
減少曲線解析 (DCA) や容量抵抗モデル (CRM) のような解析的データ駆動モデルは、ある程度の物理制約を統合することができる比較的単純なモデルでグリッドフリーのソリューションを提供する。
しかし、解析解は地下の幾何学を無視し、特定の流れ状態にのみ適しており、それ以外は物理条件に反し、モデル予測精度が劣化する可能性がある。
時系列の機械学習に基づく予測モデルは、生産予測のための非パラメトリックな仮定なしのソリューションを提供するが、トレーニングデータ間隔により過度にモデルに適合しがちである。
生産予測のためのグリッドフリーな物理インフォームドグラフニューラルネットワーク(PI-GNN)を提案する。
カスタマイズされたグラフ畳み込み層は、過去のデータから近所の情報を集約し、データ駆動モデルにドメインの専門知識を統合する柔軟性を有する。
提案手法はCRMのようなクローズドなソリューションへの依存を緩和し、与えられた物理に基づく制約を尊重する。
提案手法は,従来のCRMおよびGNNベースラインに対して,物理制約を伴わずに性能とモデル解釈性を向上する。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
ニューラルネットワークを用いた中レージ気象予報センターのモデル誤差補正手法を開発した。
ネットワークは、運用分析と分析インクリメントの大規模なデータセットを使用して、オフラインで事前トレーニングされている。
その後、データ同化や予測実験に使用されるように、オブジェクト指向予測システム(OOPS)内のIFSに統合される。
論文 参考訳(メタデータ) (2024-03-06T13:36:31Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Dynamic Graph Neural Network with Adaptive Edge Attributes for Air
Quality Predictions [12.336689498639366]
本稿では,メッセージパッシングネットワーク上での適応エッジ属性(DGN-AEA)を用いた動的グラフニューラルネットワークを提案する。
エッジを確立するための事前情報とは異なり、事前情報なしでエンドツーエンドのトレーニングを通じて適応的なエッジ情報を得ることができる。
論文 参考訳(メタデータ) (2023-02-20T13:45:55Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
本稿では,オフラインとオンラインのフェーズからなる実践的なワークフローを提案する。
オフラインフェーズには、不確実な事前ニアウェルジオモデルのトレーニングと構築が含まれている。
オンラインフェーズでは、フレキシブルな反復アンサンブルスムーズ(FlexIES)を使用して、極深電磁データのリアルタイム同化を行う。
論文 参考訳(メタデータ) (2022-10-27T15:38:26Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。