DAPO-QAOA: An algorithm for solving combinatorial optimization problems by dynamically constructing phase operators
- URL: http://arxiv.org/abs/2502.04100v1
- Date: Thu, 06 Feb 2025 14:24:05 GMT
- Title: DAPO-QAOA: An algorithm for solving combinatorial optimization problems by dynamically constructing phase operators
- Authors: Yukun Wang, ZeYang Li, Linchun Wan,
- Abstract summary: We introduce a Dynamic Adaptive Phase Operator (DAPO) algorithm, which constructs phase operators based on the output of previous layers and neighborhood search approach.
DAPO achieves higher approximation ratios and significantly reduces two-qubit RZZ gates, especially in dense graphs.
Compared to vanilla QAOA, DAPO uses only 66% of RZZ gates at the same depth while delivering better results.
- Score: 3.146466735747661
- License:
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a well-known hybrid quantum-classical algorithm for combinatorial optimization problems. Improving QAOA involves enhancing its approximation ratio while addressing practical constraints of Noisy Intermediate Scale Quantum (NISQ) devices, such as minimizing the number of two-qubit gates and reducing circuit depth. Although existing research has optimized designs for phase and mixer operators to improve performance, challenges remain, particularly concerning the excessive use of two-qubit gates in the construction of phase operators. To address these issues, we introduce a Dynamic Adaptive Phase Operator (DAPO) algorithm, which dynamically constructs phase operators based on the output of previous layers and neighborhood search approach, optimizing the problem Hamiltonian more efficiently. By using solutions generated by QAOA itself to simplify the problem Hamiltonian at each layer, the algorithm captures the problem's structural properties more effectively, progressively steering the solution closer to the optimal target. Experimental results on MaxCut and NAE3SAT problems show that DAPO achieves higher approximation ratios and significantly reduces two-qubit RZZ gates, especially in dense graphs. Compared to vanilla QAOA, DAPO uses only 66% of RZZ gates at the same depth while delivering better results, demonstrating its potential for efficient combinatorial optimization in the NISQ era.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
arXiv Detail & Related papers (2023-07-19T17:22:44Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Quantum Approximate Optimization Algorithm with Adaptive Bias Fields [4.03537866744963]
The quantum approximate optimization algorithm (QAOA) transforms a simple many-qubit wavefunction into one which encodes a solution to a difficult classical optimization problem.
In this paper, the QAOA is modified by updating the operators themselves to include local fields, using information from the measured wavefunction at the end of one step to improve the operators at later steps.
arXiv Detail & Related papers (2021-05-25T13:51:09Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.