論文の概要: Ancient Greek Technology: An Immersive Learning Use Case Described Using a Co-Intelligent Custom ChatGPT Assistant
- arxiv url: http://arxiv.org/abs/2502.04110v1
- Date: Thu, 06 Feb 2025 14:35:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:43.073534
- Title: Ancient Greek Technology: An Immersive Learning Use Case Described Using a Co-Intelligent Custom ChatGPT Assistant
- Title(参考訳): 古代ギリシアのテクノロジー: インテリジェントなカスタムチャットGPTアシスタントを使って記述した没入型学習用ユースケース
- Authors: Vlasis Kasapakis, Leonel Morgado,
- Abstract要約: 本稿では,構造化事例報告が,没入型学習文学への新たな貢献であることを示す。
本報告では,ChatGPTアシスタントの使用は,最終ILCSのチームメンバーのコヒーレンスと品質を著しく向上させるものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Achieving consistency in immersive learning case descriptions is essential but challenging due to variations in research focus, methodology, and researchers' background. We address these challenges by leveraging the Immersive Learning Case Sheet (ILCS), a methodological instrument to standardize case descriptions, that we applied to an immersive learning case on ancient Greek technology in VRChat. Research team members had differing levels of familiarity with the ILCS and the case content, so we developed a custom ChatGPT assistant to facilitate consistent terminology and process alignment across the team. This paper constitutes an example of how structured case reports can be a novel contribution to immersive learning literature. Our findings demonstrate how the ILCS supports structured reflection and interpretation of the case. Further we report that the use of a ChatGPT assistant significantly sup-ports the coherence and quality of the team members development of the final ILCS. This exposes the potential of employing AI-driven tools to enhance collaboration and standardization of research practices in qualitative educational research. However, we also discuss the limitations and challenges, including reliance on AI for interpretive tasks and managing varied levels of expertise within the team. This study thus provides insights into the practical application of AI in standardizing immersive learning research processes.
- Abstract(参考訳): 没入型学習事例記述における一貫性の達成は不可欠だが,研究の焦点,方法論,研究者の背景が変化しているため困難である。
ケース記述を標準化するための方法論であるImmersive Learning Case Sheet (ILCS)を活用することでこれらの課題に対処し、VRChatの古代ギリシア技術に関する没入型学習ケースに適用した。
研究チームのメンバはILCSとケースの内容に馴染みのレベルが異なるため、チーム間で一貫した用語やプロセスアライメントを容易にするカスタムのChatGPTアシスタントを開発しました。
本稿では,構造化事例報告が,没入型学習文学への新たな貢献であることを示す。
本研究は,ILCSが構造的リフレクションと症例の解釈をどのようにサポートするかを示すものである。
さらに、ChatGPTアシスタントの使用は、最終ILCSの開発メンバーのコヒーレンスと品質を著しく向上させると報告した。
これは、定性的な教育研究における研究プラクティスのコラボレーションと標準化を強化するために、AI駆動のツールを採用する可能性を明らかにする。
しかし、私たちは、解釈タスクに対するAIへの依存や、チーム内のさまざまなレベルの専門知識の管理など、制限や課題についても議論しています。
そこで本研究では,没入型学習研究プロセスの標準化におけるAIの実践的応用に関する知見を提供する。
関連論文リスト
- Survey on Vision-Language-Action Models [0.2636873872510828]
この研究は、オリジナルの研究を表現していないが、AIが文学レビューの自動化にどのように役立つかを強調している。
今後の研究は、AI支援文学レビューのための構造化されたフレームワークの開発に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-07T11:56:46Z) - SAME: Learning Generic Language-Guided Visual Navigation with State-Adaptive Mixture of Experts [54.11162991206203]
本稿では,多様なナビゲーションタスクを統一的で汎用的なフレームワークに統合する。
本稿では,エージェントによる意思決定の推論を効果的に行うことのできる,新しい状態適応型エキスパート混合モデルを提案する。
論文 参考訳(メタデータ) (2024-12-07T06:12:53Z) - Utilizing ChatGPT in a Data Structures and Algorithms Course: A Teaching Assistant's Perspective [1.0650780147044159]
この研究は、データ構造とアルゴリズム(DSA)コースにおけるChatGPTの使用について、特にTAの監督と組み合わせて検討している。
その結果,ChatGPTを構造化プロンプトとアクティブTAガイダンスに組み込むことで,複雑なアルゴリズム概念の理解,エンゲージメントの向上,学業成績の向上が図られた。
この研究は、学生がAI生成コンテンツへの依存を減らし、全体的な教育的影響を増幅する上で、活発なTA関与の重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-10-11T15:18:48Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing [0.5266869303483376]
レビューでは、各タスクを体系的に導入し、キーアーキテクチャをリカレントニューラルネットワーク(RNN)からBERTのようなトランスフォーマーベースのモデルに記述する。
アンサンブル技術の適用性を強調し、様々なNLPアプリケーションを強化する能力を強調している。
計算オーバーヘッド、オーバーフィッティング、モデル解釈複雑性などの実装上の課題に対処する。
論文 参考訳(メタデータ) (2023-12-09T14:49:34Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - How Generative AI models such as ChatGPT can be (Mis)Used in SPC
Practice, Education, and Research? An Exploratory Study [2.0841728192954663]
生成人工知能(AI)モデルは、統計的プロセス制御(SPC)の実践、学習、研究に革命をもたらす可能性がある。
これらのツールは開発の初期段階にあり、簡単に誤用されるか、誤解される可能性がある。
コードを提供し、基本的な概念を説明し、SPCの実践、学習、研究に関する知識を創造するChatGPTの能力を探求する。
論文 参考訳(メタデータ) (2023-02-17T15:48:37Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
本稿では、市販QAモデルアーキテクチャと互換性のあるコモンセンスフレームワークの自己教師型双方向表現学習を提案する。
このフレームワークは5つの自己教師型タスクから構成されており、リッチコモンセンスを含むコンテキストから追加のトレーニング信号を完全に活用するようモデルに強制する。
elBERtoは、単純な語彙的類似性比較が役に立たないような、アウト・オブ・パラグラフや非エフェクトな問題に対して、大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-17T16:23:45Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。