論文の概要: Utilizing ChatGPT in a Data Structures and Algorithms Course: A Teaching Assistant's Perspective
- arxiv url: http://arxiv.org/abs/2410.08899v1
- Date: Fri, 11 Oct 2024 15:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 21:16:19.410834
- Title: Utilizing ChatGPT in a Data Structures and Algorithms Course: A Teaching Assistant's Perspective
- Title(参考訳): データ構造とアルゴリズムのコースにおけるChatGPTの利用:教師の立場から
- Authors: Pooriya Jamie, Reyhaneh Hajihashemi, Sharareh Alipour,
- Abstract要約: この研究は、データ構造とアルゴリズム(DSA)コースにおけるChatGPTの使用について、特にTAの監督と組み合わせて検討している。
その結果,ChatGPTを構造化プロンプトとアクティブTAガイダンスに組み込むことで,複雑なアルゴリズム概念の理解,エンゲージメントの向上,学業成績の向上が図られた。
この研究は、学生がAI生成コンテンツへの依存を減らし、全体的な教育的影響を増幅する上で、活発なTA関与の重要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 1.0650780147044159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating large language models (LLMs) like ChatGPT is revolutionizing the field of computer science education. These models offer new possibilities for enriching student learning and supporting teaching assistants (TAs) in providing prompt feedback and supplementary learning resources. This research delves into the use of ChatGPT in a data structures and algorithms (DSA) course, particularly when combined with TA supervision. The findings demonstrate that incorporating ChatGPT with structured prompts and active TA guidance enhances students' understanding of intricate algorithmic concepts, boosts engagement, and elevates academic performance. However, challenges exist in addressing academic integrity and the limitations of LLMs in tackling complex problems. The study underscores the importance of active TA involvement in reducing students' reliance on AI-generated content and amplifying the overall educational impact. The results suggest that while LLMs can be advantageous for education, their successful integration demands continuous oversight and a thoughtful balance between AI and human guidance.
- Abstract(参考訳): ChatGPTのような大きな言語モデル(LLM)を統合することは、コンピュータサイエンス教育の分野に革命をもたらしている。
これらのモデルは、学生の学習を充実させ、迅速なフィードバックと補足的な学習資源を提供するために、教師支援(TA)を支援する新しい可能性を提供する。
この研究は、データ構造とアルゴリズム(DSA)コースにおけるChatGPTの使用について、特にTAの監督と組み合わせて検討している。
その結果,ChatGPTを構造化プロンプトとアクティブTAガイダンスに組み込むことで,複雑なアルゴリズム概念の理解が促進され,エンゲージメントが向上し,学業成績が向上することが示唆された。
しかし、学術的整合性と複雑な問題に取り組む上でのLLMの限界に対処する上での課題が存在する。
この研究は、学生がAI生成コンテンツへの依存を減らし、全体的な教育的影響を増幅する上で、活発なTA関与の重要性を浮き彫りにしている。
結果は、LLMは教育に有利であるが、その成功には継続的な監視と、AIと人間の指導の思慮深いバランスが必要であることを示唆している。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - The AI Companion in Education: Analyzing the Pedagogical Potential of ChatGPT in Computer Science and Engineering [1.120999712480549]
本研究は,CSE教育におけるChatGPTの教育的ポテンシャルを包括的に分析することを目的とする。
我々は体系的なアプローチを採用し、CSE分野における多様な教育実践問題を創出する。
我々の調査によると、概念知識クエリのような特定の質問タイプは、一般的にChatGPTに重大な課題を生じさせません。
論文 参考訳(メタデータ) (2024-04-23T21:42:30Z) - Investigation of the effectiveness of applying ChatGPT in Dialogic Teaching Using Electroencephalography [6.34494999013996]
大規模言語モデル(LLM)には、知識を解釈し、質問に答え、文脈を考える能力がある。
この研究は、34人の大学生を参加者として募集し、ランダムに2つのグループに分けられた。
実験群はChatGPTを用いて対話型指導を行い,コントロール群は人間教師と対話した。
論文 参考訳(メタデータ) (2024-03-25T12:23:12Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - AI-assisted Learning for Electronic Engineering Courses in High
Education [2.67766280323297]
この研究には、学生、講師、エンジニアなど、様々な利害関係者の評価と反映が含まれている。
この研究の結果は、AIツールとしてのChatGPTのメリットと限界に光を当て、技術的分野における革新的な学習アプローチの道を開いた。
論文 参考訳(メタデータ) (2023-11-02T07:48:10Z) - Learning from Teaching Assistants to Program with Subgoals: Exploring
the Potential for AI Teaching Assistants [18.14390906820148]
本研究では,プログラミング教育における生成AIをTAとして活用する実践性について,初心者の学習者によるTAとのインタラクションをサブゴナル学習環境において検証することによって検討する。
我々の研究は、AI TAで同等のスコアで、学習者がより高速にタスクを解くことができることを示している。
チャットログ分析の結果から,プログラミング教育において生成AIをTAとして設計し,活用するためのガイドラインを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:30:58Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。