論文の概要: Adaptive Margin Contrastive Learning for Ambiguity-aware 3D Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2502.04111v1
- Date: Thu, 06 Feb 2025 14:39:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:32.930875
- Title: Adaptive Margin Contrastive Learning for Ambiguity-aware 3D Semantic Segmentation
- Title(参考訳): 曖昧性を考慮した3次元セマンティックセマンティックセグメンテーションのための適応的マージンコントラスト学習
- Authors: Yang Chen, Yueqi Duan, Runzhong Zhang, Yap-Peng Tan,
- Abstract要約: 本稿では,3Dポイントクラウドセマンティックセマンティックセグメンテーション,すなわちAMContrast3Dの適応的マージン比較学習法を提案する。
我々は,各点のアンビグニティレベルに基づいて適応目標を設計し,低アンビグニティポイントの正しさを確保しつつ,高アンビグニティポイントのミスを許容することを目的とした。
大規模データセットであるS3DISとScanNetの実験結果から,本手法が最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 25.29651362098539
- License:
- Abstract: In this paper, we propose an adaptive margin contrastive learning method for 3D point cloud semantic segmentation, namely AMContrast3D. Most existing methods use equally penalized objectives, which ignore per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we design adaptive objectives for individual points based on their ambiguity levels, aiming to ensure the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. Specifically, we first estimate ambiguities based on position embeddings. Then, we develop a margin generator to shift decision boundaries for contrastive feature embeddings, so margins are narrowed due to increasing ambiguities with even negative margins for extremely high-ambiguity points. Experimental results on large-scale datasets, S3DIS and ScanNet, demonstrate that our method outperforms state-of-the-art methods.
- Abstract(参考訳): 本稿では,3Dポイントクラウドセマンティックセマンティックセグメンテーション,すなわちAMContrast3Dの適応的マージン比較学習法を提案する。
既存のほとんどの手法は、ポイント毎の曖昧さを無視し、遷移領域から生じる差別的特徴を無視する、均等に罰せられる目的を用いる。
しかしながら、高度にあいまいな点が人間にとっても区別できないため、手動でアノテートしたラベルは信頼性が低く、これらの点に対する厳しい制約は準最適モデルに繋がる。
そこで我々は,各点のアンビグニティレベルに基づいた適応目標を設計し,低アンビグニティポイントの正当性を確保しつつ,高アンビグニティポイントのミスを許容することを目的とした。
具体的には,まず位置埋め込みに基づくあいまいさを推定する。
そこで, 対照的な特徴埋め込みに対する決定境界をシフトするマージン生成器を開発し, 極端に曖昧な点に対して負のマージンを持つあいまいさが増大するため, マージンは狭くなる。
大規模データセットであるS3DISとScanNetの実験結果から,本手法が最先端の手法より優れていることが示された。
関連論文リスト
- Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
本稿では,マルチモーダルポイント親和性推論モジュールを新たに導入した,シンプルで効果的なシーンレベルの弱教師付きポイントクラウドセグメンテーション法を提案する。
ScanNet と S3DIS のベンチマークでは,最先端の ScanNet と S3DIS のベンチマークでは 4% から 6% の mIoU を達成している。
論文 参考訳(メタデータ) (2023-12-27T14:01:35Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
ドメイン適応型3Dオブジェクト検出において,疑似ラベリング技術を用いた教師なしドメイン適応(DA)が重要なアプローチとして浮上している。
既存のDAメソッドは、マルチクラスのトレーニング環境に適用した場合、パフォーマンスが大幅に低下する。
本稿では,すべてのクラスを一度に検出する学習に適した新しいReDBフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-16T04:34:11Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge
Detector [70.43599299422813]
既存のメソッドは、単純な投票プロセスを使用して複数のアノテーションを融合し、エッジ固有の曖昧さを無視し、アノテータのラベル付けバイアスを無視する。
多様なアノテーションの主観性とあいまいさを調査するために不確実性を利用した新しい不確実性認識エッジ検出器(UAED)を提案する。
UAEDは複数のエッジ検出ベンチマークで一貫したパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-03-21T13:14:36Z) - Reliability-Adaptive Consistency Regularization for Weakly-Supervised
Point Cloud Segmentation [80.07161039753043]
極端に限られたラベルを持つ弱教師付きポイントクラウドセグメンテーションは、高額な注釈付き3Dポイントの収集コストを軽減するのが望ましい。
本稿では、弱教師付き学習において一般的に用いられる一貫性の正則化を、複数のデータ固有の拡張を伴うポイントクラウドに適用することを検討する。
疑似ラベルの信頼性を評価するために,予測信頼性とモデル不確実性を両立させる新しい信頼性適応整合ネットワーク(RAC-Net)を提案する。
論文 参考訳(メタデータ) (2023-03-09T10:41:57Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
弱制御点雲分割のための新しいDATモデル(textbfDual textbfAdaptive textbfTransformations)を提案する。
我々は,大規模S3DISデータセットとScanNet-V2データセットの2つの人気バックボーンを用いたDATモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-19T05:43:14Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z) - Investigate Indistinguishable Points in Semantic Segmentation of 3D
Point Cloud [34.414363402029984]
区別不能な点は、複雑な境界に位置する点と、類似した局所的なテクスチャを持つ点と、小さな硬い領域を分離する点からなる。
階層的セマンティック特徴を利用して,識別不能な点を適応的に選択する,識別不能な領域フォカライゼーションネットワーク(IAF-Net)を提案する。
IAF-Netは、いくつかの人気の3Dポイントクラウドデータセットで最先端のパフォーマンスで同等の結果を達成します。
論文 参考訳(メタデータ) (2021-03-18T15:54:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。