論文の概要: Predictive and prescriptive analytics for multi-site modelling of frail and elderly patient services
- arxiv url: http://arxiv.org/abs/2311.07283v3
- Date: Thu, 24 Apr 2025 09:48:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-25 21:09:46.306735
- Title: Predictive and prescriptive analytics for multi-site modelling of frail and elderly patient services
- Title(参考訳): 要介護高齢者のマルチサイトモデリングにおける予測的・規範的分析
- Authors: Elizabeth Williams, Daniel Gartner, Paul Harper,
- Abstract要約: 本研究は, 病院病棟におけるベッドとスタッフの能力計画の運用上の課題を, 予測的, 規範的分析手法を用いて解決するものである。
本手法を英国11病院のネットワーク上で165,000人の患者に応用した。
その結果、この統合されたアプローチは、患者LOSの実際の変動を捉え、平均的な計画よりも7%のコスト削減を提供することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many economies are challenged by the effects of an ageing population, particularly in sectors where resource capacity planning is critical, such as healthcare. This research addresses the operational challenges of bed and staffing capacity planning in hospital wards by using predictive and prescriptive analytical methods, both individually and in tandem. We applied these methodologies to a study of 165,000 patients across a network of 11 hospitals in the UK. Predictive modelling, specifically Classification and Regression Trees, forecasts patient length of stay based on clinical and demographic data. On the prescriptive side, deterministic and two-stage stochastic optimisation models determine optimal bed and staff planning strategies to minimise costs. Linking the predictive models with the prescriptive optimisation models, generates demand forecasts that inform the optimisation process, providing accurate and practical solutions. The results demonstrate that this integrated approach captures real-world variations in patient LOS and offers a 7% cost saving compared to average-based planning. This approach helps healthcare managers make robust decisions by incorporating patient-specific characteristics, improving capacity allocation, and mitigating risks associated with demand variability. Consequently, this combined methodology can be broadly extended across various sectors facing similar challenges, showcasing the versatility and effectiveness of integrating predictive and prescriptive analytics.
- Abstract(参考訳): 多くの経済は高齢化の影響を受けており、特に医療など資源容量の計画が重要となる分野では特に課題となっている。
本研究は, 病院病棟におけるベッドとスタッフの能力計画の運用上の課題を, 個人的, 個人的に予測的, 規範的分析手法を用いて解決するものである。
本手法を英国11病院のネットワーク上で165,000人の患者に応用した。
予測モデリング、特に分類と回帰木は、臨床および人口統計データに基づいて患者の滞在期間を予測する。
規範的側面では、決定論的および2段階確率最適化モデルは、コストを最小限に抑える最適なベッドとスタッフ計画戦略を決定する。
予測モデルを規範的最適化モデルにリンクし、最適化プロセスに通知する需要予測を生成し、正確で実用的なソリューションを提供する。
その結果、この統合されたアプローチは、患者LOSの実際の変動を捉え、平均的な計画よりも7%のコスト削減を提供することを示した。
このアプローチは、患者固有の特徴を取り入れ、キャパシティ割り当てを改善し、需要変動に伴うリスクを軽減することで、医療管理者の堅牢な意思決定を支援する。
結果として、この組み合わせの方法論は、同様の課題に直面した様々な分野に広範に拡張することができ、予測分析と規範分析の統合の汎用性と有効性を示している。
関連論文リスト
- Healthcare cost prediction for heterogeneous patient profiles using deep learning models with administrative claims data [0.0]
本研究は,技術システムと人文主義的成果との相互作用を強調する社会技術的考察を基礎にしている。
本稿では,ACデータを別のチャネルに分割することで,データの均一性を緩和するチャネルワイドディープラーニングフレームワークを提案する。
提案されたチャネルワイドモデルは、単一チャネルモデルと比較して予測誤差を23%削減し、16.4%と19.3%の過払いと低給の削減につながった。
論文 参考訳(メタデータ) (2025-02-17T19:20:41Z) - Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions [0.10624941710159722]
リファラルワークフローの非効率性は、最適な患者と高い医療費に寄与する。
本研究では,プライマリケアの診断項目に基づく手続き的ニーズの予測の可能性について検討した。
論文 参考訳(メタデータ) (2025-02-06T17:15:12Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis [3.5280004326441365]
PatWay-Netは、敗血症患者の集中治療室への入院の予測を解釈するために設計されたMLフレームワークである。
本稿では,新しいタイプのリカレントニューラルネットワークを提案し,それを多層パーセプトロンと組み合わせて患者経路を処理する。
我々は、患者の健康状態、予測結果、関連するリスクを視覚化する包括的ダッシュボードを通じて、その実用性を実証する。
論文 参考訳(メタデータ) (2024-05-21T20:31:42Z) - Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning [3.9054437595657534]
イスラエルのランバム医療センターの患者ケア需要データを用いて, 両モデルが時間差の患者需要を効果的に捉えていることを示す。
機械学習を用いて3日または1週間前に、患者のケア需要を精度よく予測できる(約4人)。
論文 参考訳(メタデータ) (2024-04-29T13:05:59Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
我々は、最適な治療体制を特定するための安全かつ解釈可能な枠組みを運用する。
本研究は患者の医療歴と薬理学的特徴に基づくパーソナライズされた治療戦略を支援する。
論文 参考訳(メタデータ) (2023-10-23T19:59:10Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Building predictive models of healthcare costs with open healthcare data [0.0]
本稿では,機械学習技術を用いた予測モデル開発手法を提案する。
我々は2016年に230万件の患者データを分析した。
私たちは、患者の診断と人口統計からコストを予測するモデルを構築しました。
論文 参考訳(メタデータ) (2023-04-05T02:12:58Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Improving healthcare access management by predicting patient no-show
behaviour [0.0]
本研究は,参加を促す戦略の実装を支援するため,DSS(Decision Support System)を開発する。
回帰モデルの精度を向上させるために,異なる機械学習手法の有効性を評価する。
過去の研究で報告された関係の定量化に加えて、収入と近隣の犯罪統計はノーショー確率に影響を与えることが判明した。
論文 参考訳(メタデータ) (2020-12-10T14:57:25Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。