Tensor-Programmable Quantum Circuits for Solving Differential Equations
- URL: http://arxiv.org/abs/2502.04425v1
- Date: Thu, 06 Feb 2025 18:23:38 GMT
- Title: Tensor-Programmable Quantum Circuits for Solving Differential Equations
- Authors: Pia Siegl, Greta Sophie Reese, Tomohiro Hashizume, Nis-Luca van Hülst, Dieter Jaksch,
- Abstract summary: We present a quantum solver for partial differential equations based on a flexible matrix product operator representation.
It allows for the direct implementation of a broad class of differential equations governing the dynamics of classical and quantum systems.
- Score: 0.0
- License:
- Abstract: We present a quantum solver for partial differential equations based on a flexible matrix product operator representation. Utilizing mid-circuit measurements and a state-dependent norm correction, this scheme overcomes the restriction of unitary operators. Hence, it allows for the direct implementation of a broad class of differential equations governing the dynamics of classical and quantum systems. The capabilities of the framework are demonstrated for an example system governed by Euler equations with absorbing boundaries.
Related papers
- Towards Variational Quantum Algorithms for generalized linear and nonlinear transport phenomena [0.0]
This article proposes a Variational Quantum Algorithm (VQA) to solve linear and nonlinear thermofluid dynamic transport equations.
The hybrid classical-quantum framework is applied to problems governed by the heat, wave, and Burgers' equation in combination with different engineering boundary conditions.
arXiv Detail & Related papers (2024-11-22T13:39:49Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
The paper presents a variational quantum algorithm to solve initial-boundary value problems described by partial differential equations.
The approach uses classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2024-02-28T18:19:33Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
We propose a transformer-based sequence-to-sequence model that recovers scalar autonomous ordinary differential equations (ODEs) in symbolic form from time-series data of a single observed solution of the ODE.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing laws of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2022-11-05T07:07:58Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Time complexity analysis of quantum algorithms via linear
representations for nonlinear ordinary and partial differential equations [31.986350313948435]
We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations.
We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations.
arXiv Detail & Related papers (2022-09-18T05:50:23Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - QuantumCumulants.jl: A Julia framework for generalized mean-field
equations in open quantum systems [0.0]
We present an open-source framework that fully automizes equations of motion of operators up to a desired order.
After reviewing the theory we present the framework and showcase its usefulness in a few example problems.
arXiv Detail & Related papers (2021-05-04T08:53:02Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.