CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis
- URL: http://arxiv.org/abs/2406.12665v3
- Date: Tue, 11 Feb 2025 02:09:38 GMT
- Title: CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis
- Authors: Saranya Venkatraman, Nafis Irtiza Tripto, Dongwon Lee,
- Abstract summary: We generate the first exclusively LLM-generated collaborative stories dataset called CollabStory.
We generate over 32k stories using open-source instruction-tuned LLMs.
We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration.
- Score: 5.929552001093879
- License:
- Abstract: The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author to multi-author (up to 5 LLMs) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of new techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at https://github.com/saranya-venkatraman/CollabStory.
Related papers
- When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.
We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.
We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
arXiv Detail & Related papers (2025-02-06T21:13:44Z) - CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation [13.867950651601483]
Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation.
Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input.
We propose a new paradigm, textbfCollaborative textbfLoRA, with a collaborative query generator.
arXiv Detail & Related papers (2024-08-20T08:36:59Z) - Prompto: An open source library for asynchronous querying of LLM endpoints [1.3912854618248238]
prompto is an open source Python library which facilitates asynchronous querying of Large Language Model (LLM) endpoints.
Our library empowers researchers and developers to interact with LLMs more effectively and allowing faster experimentation, data generation and evaluation.
arXiv Detail & Related papers (2024-08-12T15:19:59Z) - Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models [32.336273322481276]
Despite their diverse capabilities, Large Language Models (LLMs) exhibit varying strengths and weaknesses.
To address these challenges, recent studies have explored collaborative strategies for LLMs.
This paper provides a comprehensive overview of this emerging research area, highlighting the motivation behind such collaborations.
arXiv Detail & Related papers (2024-07-08T16:29:08Z) - Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
We introduce BinLLM, a novel method to seamlessly integrate collaborative information with Large Language Models for Recommendation (LLMRec)
BinLLM converts collaborative embeddings from external models into binary sequences.
BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths.
arXiv Detail & Related papers (2024-06-05T12:45:25Z) - LLM Attributor: Interactive Visual Attribution for LLM Generation [29.116016627864095]
Python library provides interactive visualizations for training data attribution of large language models.
Our library offers a new way to quickly attribute an LLM's text generation to training data points.
arXiv Detail & Related papers (2024-04-01T13:16:34Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.