論文の概要: Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces
- arxiv url: http://arxiv.org/abs/2502.04548v1
- Date: Thu, 06 Feb 2025 22:57:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:00.522327
- Title: Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces
- Title(参考訳): 大規模特徴空間における大規模言語モデル一般化のための文脈勾配流れモデリング
- Authors: Daphne Quillington, Kingsley Fairbrother, Xavier Tattershall, Irin Kabakum,
- Abstract要約: マルチスケールの文脈調整を取り入れた構造的勾配改善フレームワークが導入された。
重み更新の階層的な調整は、従来のバックプロパゲーションの代替となった。
構造最適化戦略は不均一なテキスト分布の適応性を保ちながらオーバーフィッティングを緩和する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Optimization methodologies for training large-scale neural architectures often rely on uniform gradient propagation mechanisms that fail to align with hierarchical linguistic structures, limiting their capacity to generalize across diverse language distributions. A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments, improving parameter adaptation through dynamic weighting strategies that enhanced representation coherence. Empirical evaluations demonstrated that structured propagation mechanisms contributed to reductions in gradient oscillations, resulting in more stable training dynamics and improved optimization efficiency. The comparative performance assessment indicated that models incorporating hierarchical propagation strategies exhibited greater robustness in long-range dependency retention and cross-domain adaptation. The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation, reducing sensitivity to initialization conditions while improving overall convergence efficiency. The experimental results confirmed that structured gradient propagation influenced representation learning trajectories, aligning parameter updates with broader linguistic dependencies rather than isolated token-level relationships. Statistical evaluations indicated that structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions. The findings established that structured gradient propagation provided an empirically validated framework for refining hierarchical representation learning, supporting more effective integration of linguistic dependencies into optimization dynamics.
- Abstract(参考訳): 大規模ニューラルネットワークアーキテクチャを訓練するための最適化手法は、階層型言語構造と整合しない一様勾配伝搬機構に依存し、言語分布の多様性にまたがる一般化能力を制限する。
マルチスケールの文脈調整を取り入れ、表現コヒーレンスを向上する動的重み付け戦略によりパラメータ適応を改善するため、構造化勾配改善フレームワークが導入された。
実験的な評価により、構造的伝播機構が勾配振動の低減に寄与し、より安定したトレーニングダイナミクスが得られ、最適化効率が向上した。
比較性能評価の結果,階層的伝播戦略を取り入れたモデルでは,長期依存性保持とドメイン間適応において強い堅牢性を示した。
重み更新の階層的な調整は、従来のバックプロパゲーションの代替となり、初期化条件に対する感度を低減し、全体的な収束効率を改善した。
実験結果から,構造的勾配伝搬が表現学習軌跡に影響を及ぼし,パラメータ更新をトークンレベルの孤立関係ではなく,より広い言語的依存関係と整合させることが確認された。
統計的評価から、構造化最適化手法は不均一なテキスト分布の順応性を保ちながら過度な適合を緩和したことが示唆された。
その結果,構造的勾配伝播は階層的表現学習を改良するための実証的な枠組みを提供し,言語依存を最適化力学へより効果的な統合を支援することが判明した。
関連論文リスト
- Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
高次元潜在空間におけるトークン表現は、しばしば冗長性を示し、計算効率を制限し、モデル層全体の構造的コヒーレンスを低減する。
本稿では,学習した埋め込みにおいて,マルチスケールの組織を強制する構造的変換機構を提案する。
経験的評価は、層間の表現分散の減少を示し、より安定したパープレキシティ分布に寄与し、テキスト生成における予測信頼性を高める。
論文 参考訳(メタデータ) (2025-02-13T04:01:54Z) - Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
ディープ・ニューラル・アーキテクチャの内部表現は言語構造の高次元抽象化を符号化する。
本稿では,制御された部分空間制約によりトークン埋め込みを選択的に再構成する構造的精細化手法を提案する。
実験により、構造的介入により異方性が減少し、表現のコンパクト性が改善された。
論文 参考訳(メタデータ) (2025-02-12T00:00:37Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
潜在トークン表現の組織化は、言語モデルの安定性、一般化、文脈整合性を決定する上で重要な役割を果たす。
コアモデル重みを変化させることなくトークン埋め込みに階層的アライメント手法を導入した。
実験により, 希少なトークン検索, 逆方向, 長距離依存性追跡の改善が示された。
論文 参考訳(メタデータ) (2025-02-06T04:01:27Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
論文 参考訳(メタデータ) (2025-01-31T00:46:21Z) - Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM)は、勾配最適化に対する新しいアプローチを導入する。
勾配を分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱う。
提案手法は,既存の最適化戦略において重要なギャップを埋めるものである。
論文 参考訳(メタデータ) (2025-01-28T11:50:35Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。