AI-Driven Solutions for Falcon Disease Classification: Concatenated ConvNeXt cum EfficientNet AI Model Approach
- URL: http://arxiv.org/abs/2502.04682v1
- Date: Fri, 07 Feb 2025 06:10:26 GMT
- Title: AI-Driven Solutions for Falcon Disease Classification: Concatenated ConvNeXt cum EfficientNet AI Model Approach
- Authors: Alavikunhu Panthakkan, Zubair Medammal, S M Anzar, Fatma Taher, Hussain Al-Ahmad,
- Abstract summary: This research paper introduces a cutting-edge approach, which leverages the power of Concatenated ConvNeXt and EfficientNet AI models for falcon disease classification.<n>The study employs a comprehensive dataset for model training and evaluation, utilizing metrics such as accuracy, precision, recall, and f1-score.
- Score: 0.17476232824732776
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Falconry, an ancient practice of training and hunting with falcons, emphasizes the need for vigilant health monitoring to ensure the well-being of these highly valued birds, especially during hunting activities. This research paper introduces a cutting-edge approach, which leverages the power of Concatenated ConvNeXt and EfficientNet AI models for falcon disease classification. Focused on distinguishing 'Normal,' 'Liver,' and 'Aspergillosis' cases, the study employs a comprehensive dataset for model training and evaluation, utilizing metrics such as accuracy, precision, recall, and f1-score. Through rigorous experimentation and evaluation, we demonstrate the superior performance of the concatenated AI model compared to traditional methods and standalone architectures. This novel approach contributes to accurate falcon disease classification, laying the groundwork for further advancements in avian veterinary AI applications.
Related papers
- Prediction of Freezing of Gait in Parkinsons Disease using Explainable AI and Federated Deep Learning for Wearable Sensors [0.0]
This study uses an Inertial Measurement Unit (IMU) dataset to develop explainable AI methods for the early detection and prediction of Freezing of Gait (FOG)<n>A Stacking Ensemble model achieves superior performance, surpassing a hybrid bidirectional GRU model and reaching nearly 99% classification accuracy.<n>The proposed FOG prediction framework incorporates federated learning, where models are trained locally on individual devices and aggregated on a central server.
arXiv Detail & Related papers (2025-07-01T01:22:12Z) - A Hybrid ConvNeXt-EfficientNet AI Solution for Precise Falcon Disease Detection [0.17476232824732776]
This paper presents an innovative method employing a hybrid of ConvNeXt and EfficientNet AI models for the classification of falcon diseases.<n>The study focuses on accurately identifying three conditions: Normal, Liver Disease and 'Aspergillosis'
arXiv Detail & Related papers (2025-06-08T17:01:44Z) - An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm [0.0]
This study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images.
We utilize the newly developed Monkeypox Skin Lesion dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models.
Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%.
arXiv Detail & Related papers (2025-04-24T13:32:11Z) - Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques [1.2302586529345994]
Heart disease remains a leading cause of morbidity and mortality worldwide.
We have developed a novel voting system with feature selection techniques to advance heart disease classification.
XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.<n>A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.<n>This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
We introduce novel methods for monitoring the performance of radiology AI classification models in practice.
We propose two metrics - predictive divergence and temporal stability - to be used for preemptive alerts of AI performance changes.
arXiv Detail & Related papers (2023-11-24T06:29:04Z) - Adaptive Variance Thresholding: A Novel Approach to Improve Existing
Deep Transfer Vision Models and Advance Automatic Knee-Joint Osteoarthritis
Classification [0.11249583407496219]
Knee-Joint Osteoarthritis (KOA) is a prevalent cause of global disability and inherently complex to diagnose.
One promising classification avenue involves applying deep learning methods.
This study proposes a novel paradigm for improving post-training specialized classifiers.
arXiv Detail & Related papers (2023-11-10T00:17:07Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Incremental Outlier Detection Modelling Using Streaming Analytics in Finance & Health Care [0.0]
In the era of real-time data, traditional methods often struggle to keep pace with the dynamic nature of streaming environments.
In this paper, we proposed a hybrid framework where the model is built once and evaluated in a real-time environment.
We employed 8 distinct state-of-the-art outlier detection models, including one-class support vector machine (OCSVM), isolation forest adaptive sliding window approach (IForest ASD), exact storm (ES), angle-based outlier detection (ABOD), local outlier factor (LOF), Kitsunes online algorithm (KitNet), and K-nearest neighbour
arXiv Detail & Related papers (2023-05-17T02:30:28Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.