An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
- URL: http://arxiv.org/abs/2504.17540v1
- Date: Thu, 24 Apr 2025 13:32:11 GMT
- Title: An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
- Authors: Ahmadreza Shateri, Negar Nourani, Morteza Dorrigiv, Hamid Nasiri,
- Abstract summary: This study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images.<n>We utilize the newly developed Monkeypox Skin Lesion dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models.<n>Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
Related papers
- Improving Chronic Kidney Disease Detection Efficiency: Fine Tuned CatBoost and Nature-Inspired Algorithms with Explainable AI [0.0]
Chronic Kidney Disease (CKD) is a major global health issue which is affecting million people around the world and with increasing rate of mortality.<n>This study proposes an advanced machine learning approach to enhance CKD detection by evaluating four models: Random Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regression (LR), and a fine-tuned CatBoost algorithm.<n>The proposed CatBoost model has used a nature inspired algorithm such as Simulated Annealing to select the most important features, Cuckoo Search to adjust outliers and grid search to fine tune its settings in such a way to achieve improved prediction accuracy.
arXiv Detail & Related papers (2025-04-05T19:41:47Z) - Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques [1.2302586529345994]
Heart disease remains a leading cause of morbidity and mortality worldwide.<n>We have developed a novel voting system with feature selection techniques to advance heart disease classification.<n>XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology [1.9440228513607511]
Inpainting-Based Occlusion (IBO) is a novel strategy that utilizes a Denoising Diffusion Probabilistic Model to inpaint occluded regions.
We evaluate IBO through two phases: first, by assessing perceptual similarity using the Learned Perceptual Image Patch Similarity (LPIPS) metric, and second, by quantifying the impact on model predictions through Area Under the Curve (AUC) analysis.
arXiv Detail & Related papers (2024-08-29T09:57:55Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - An Interpretable Machine Learning Model with Deep Learning-based Imaging
Biomarkers for Diagnosis of Alzheimer's Disease [4.304406827494684]
We propose a framework that combines the strength of EBM with high-dimensional imaging data using deep learning-based feature extraction.
The proposed framework significantly outperformed an EBM model using volume biomarkers instead of deep learning-based features.
arXiv Detail & Related papers (2023-08-15T13:54:50Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.