論文の概要: Coherent Local Explanations for Mathematical Optimization
- arxiv url: http://arxiv.org/abs/2502.04840v1
- Date: Fri, 07 Feb 2025 11:18:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:28.636467
- Title: Coherent Local Explanations for Mathematical Optimization
- Title(参考訳): 数学的最適化のためのコヒーレント局所説明法
- Authors: Daan Otto, Jannis Kurtz, S. Ilker Birbil,
- Abstract要約: CLEMO(Coherent Local Explanations for Mathematical Optimization)を紹介する。
CLEMOは、最適化モデルの複数のコンポーネント、目的値と決定変数について、基礎となるモデル構造と整合性のある説明を提供する。
サンプリングに基づく手順では,正確な解法アルゴリズムの動作を説明することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The surge of explainable artificial intelligence methods seeks to enhance transparency and explainability in machine learning models. At the same time, there is a growing demand for explaining decisions taken through complex algorithms used in mathematical optimization. However, current explanation methods do not take into account the structure of the underlying optimization problem, leading to unreliable outcomes. In response to this need, we introduce Coherent Local Explanations for Mathematical Optimization (CLEMO). CLEMO provides explanations for multiple components of optimization models, the objective value and decision variables, which are coherent with the underlying model structure. Our sampling-based procedure can provide explanations for the behavior of exact and heuristic solution algorithms. The effectiveness of CLEMO is illustrated by experiments for the shortest path problem, the knapsack problem, and the vehicle routing problem.
- Abstract(参考訳): 説明可能な人工知能手法の急増は、機械学習モデルの透明性と説明可能性を高めることを目指している。
同時に、数学的最適化に使用される複雑なアルゴリズムによって決定される決定を説明することへの需要が高まっている。
しかし、現在の説明法は、基礎となる最適化問題の構造を考慮しておらず、信頼性の低い結果をもたらす。
そこで本研究では,CLEMO(Coherent Local Explanations for Mathematical Optimization)を提案する。
CLEMOは、最適化モデルの複数のコンポーネント、目的値と決定変数について、基礎となるモデル構造と整合性のある説明を提供する。
我々のサンプリングに基づく手法は,正確な解法とヒューリスティック解法の挙動を説明することができる。
CLEMOの有効性は、最短経路問題、knapsack問題、車両ルーティング問題の実験によって説明される。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Mining Potentially Explanatory Patterns via Partial Solutions [39.58317527488534]
本稿では,高適合性,単純性,原子性のバランスをとるために選択された部分解の集合を組み立てるアルゴリズムを提案する。
標準ベンチマークによる実験の結果,提案アルゴリズムは探索性能に影響を与えることなく,合理的な計算コストで説明可能性を向上させる部分解を見つけることができることがわかった。
論文 参考訳(メタデータ) (2024-04-05T20:12:02Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
簡単な統計量を用いて最適化アルゴリズムの軌道を記述する特徴抽出法を提案する。
提案するDynamoRep機能は,最適化アルゴリズムが動作している問題クラスを特定するのに十分な情報を取得する。
論文 参考訳(メタデータ) (2023-06-08T06:57:07Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
我々は、意思決定プロセスを明らかにするために、事前の意思決定データを使用する逆問題を考える。
この統計的学習問題は、データ駆動逆最適化と呼ばれる。
そこで本稿では,大規模問題を解くために,効率的なブロック座標降下に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:52:56Z) - Efficient and Modular Implicit Differentiation [68.74748174316989]
最適化問題の暗黙的な微分のための統一的で効率的かつモジュール化されたアプローチを提案する。
一見単純な原理は、最近提案された多くの暗黙の微分法を復元し、新しいものを簡単に作成できることを示している。
論文 参考訳(メタデータ) (2021-05-31T17:45:58Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
機械学習のモデル選択問題では、意味のある構造を持つ優れたモデルに対する欲求は、典型的には正規化された最適化問題によって表される。
しかし、多くのシナリオでは、数値的に意味のある構造が離散空間において特定され、難しい非最適化問題を引き起こす。
我々は、ロバスト最適化によって動機づけられた特定の問題クラスに対して、単純な連続的あるいは離散的な制約をいかに扱うかを示す。
論文 参考訳(メタデータ) (2021-02-17T21:14:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。