論文の概要: Noise Sensitivity of Hierarchical Functions and Deep Learning Lower Bounds in General Product Measures
- arxiv url: http://arxiv.org/abs/2502.05073v1
- Date: Fri, 07 Feb 2025 16:45:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:03.109522
- Title: Noise Sensitivity of Hierarchical Functions and Deep Learning Lower Bounds in General Product Measures
- Title(参考訳): 一般製品対策における階層関数の雑音感度と深層学習境界
- Authors: Rupert Li, Elchanan Mossel,
- Abstract要約: ディープネットの勾配降下性能に関する研究は、独立かつ同一分布のベルヌーイ入力の下での関数の雑音感度が学習複雑性を確立することを示した。
本稿では,非線形関数の繰り返し合成によって構築された関数が,一般製品における雑音に敏感であることを示すことによって,これらの研究の流れを橋渡しすることを目的とする。
- 参考スコア(独自算出の注目度): 6.437931786032493
- License:
- Abstract: Recent works explore deep learning's success by examining functions or data with hierarchical structure. Complementarily, research on gradient descent performance for deep nets has shown that noise sensitivity of functions under independent and identically distributed (i.i.d.) Bernoulli inputs establishes learning complexity bounds. This paper aims to bridge these research streams by demonstrating that functions constructed through repeated composition of non-linear functions are noise sensitive under general product measures.
- Abstract(参考訳): 最近の研究は、階層構造を持つ関数やデータを調べることによって、ディープラーニングの成功を探求している。
相補的に、ディープネットの勾配降下性能の研究は、独立かつ同一分布のベルヌーイ入力の下での関数の雑音感度が学習複雑性境界を確立することを示した。
本稿では,非線形関数の繰り返し合成によって構築された関数が,一般製品における雑音に敏感であることを示すことによって,これらの研究の流れを橋渡しすることを目的とする。
関連論文リスト
- Spherical Analysis of Learning Nonlinear Functionals [10.785977740158193]
本稿では,球面上の関数の集合上で定義される関数について考察する。
深部ReLUニューラルネットワークの近似能力をエンコーダデコーダフレームワークを用いて検討した。
論文 参考訳(メタデータ) (2024-10-01T20:10:00Z) - Augmented Functional Random Forests: Classifier Construction and Unbiased Functional Principal Components Importance through Ad-Hoc Conditional Permutations [0.0]
本稿では,木に基づく手法と関数型データ解析を統合した新しい教師付き分類手法を提案する。
機能的分類木と機能的ランダム林の拡張版を提案し,機能的主成分の重要性を評価するための新しいツールを取り入れた。
論文 参考訳(メタデータ) (2024-08-23T15:58:41Z) - Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning [57.91994916297646]
構造的階層的な音波材料は、複数の周波数範囲にわたるエラストダイナミック波と振動の有望なチューニング性を引き起こしている。
本稿では、各長さスケールの特徴が対象周波数範囲内の帯域ギャップをもたらす階層単位セルを求める。
提案手法は,階層型設計空間における新しい領域の探索を柔軟かつ効率的に行う手法である。
論文 参考訳(メタデータ) (2024-08-15T21:35:06Z) - A topological description of loss surfaces based on Betti Numbers [8.539445673580252]
多層ニューラルネットワークの場合の損失複雑性を評価するためのトポロジカル尺度を提供する。
損失関数やモデルアーキテクチャの特定のバリエーション、例えば$ell$正規化項の追加やフィードフォワードネットワークでの接続のスキップは、特定のケースにおける損失には影響しない。
論文 参考訳(メタデータ) (2024-01-08T11:20:04Z) - Correlated Noise Provably Beats Independent Noise for Differentially Private Learning [25.81442865194914]
異なるプライベート学習アルゴリズムは学習プロセスにノイズを注入する。
問題パラメータの関数として,バニラ-SGDの相関ノイズがいかに改善するかを示す。
論文 参考訳(メタデータ) (2023-10-10T16:48:18Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
実世界の強化学習アプリケーションでは、学習者の観察空間は、その課題に関する関連情報と無関係情報の両方でユビキタスに高次元である。
本稿では,強化学習のための新しい問題設定法であるExogenous Decision Process (ExoMDP)を導入する。
内因性成分の大きさのサンプル複雑度で準最適ポリシーを学習するアルゴリズムであるExoRLを提案する。
論文 参考訳(メタデータ) (2022-06-09T05:19:32Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation [9.764638397706717]
サブレベル設定メンバーシップのルックアヘッド後部に対する解析式を導出する。
これらがLSE獲得関数のクラスに対する解析的表現にどのように寄与するかを示す。
論文 参考訳(メタデータ) (2022-03-18T05:25:35Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Searching for Robustness: Loss Learning for Noisy Classification Tasks [81.70914107917551]
テイラーを用いたフレキシブルな損失関数群をパラメタライズし、この空間におけるノイズロスの探索に進化的戦略を適用する。
その結果、ホワイトボックスの損失は、さまざまな下流タスクで効果的なノイズロバスト学習を可能にするシンプルで高速な「プラグアンドプレイ」モジュールを提供します。
論文 参考訳(メタデータ) (2021-02-27T15:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。