3DMolFormer: A Dual-channel Framework for Structure-based Drug Discovery
- URL: http://arxiv.org/abs/2502.05107v1
- Date: Fri, 07 Feb 2025 17:28:10 GMT
- Title: 3DMolFormer: A Dual-channel Framework for Structure-based Drug Discovery
- Authors: Xiuyuan Hu, Guoqing Liu, Can Chen, Yang Zhao, Hao Zhang, Xue Liu,
- Abstract summary: 3DMolFormer is a unified dual-channel transformer-based framework applicable to both docking and 3D drug design tasks.
We represent 3D pocket-ligand complexes using parallel sequences of discrete tokens and continuous numbers, and we design a corresponding dual-channel transformer model to handle this format.
Experimental results demonstrate that 3DMolFormer outperforms previous approaches in both protein-ligand docking and pocket-aware 3D drug design.
- Score: 17.78777622199143
- License:
- Abstract: Structure-based drug discovery, encompassing the tasks of protein-ligand docking and pocket-aware 3D drug design, represents a core challenge in drug discovery. However, no existing work can deal with both tasks to effectively leverage the duality between them, and current methods for each task are hindered by challenges in modeling 3D information and the limitations of available data. To address these issues, we propose 3DMolFormer, a unified dual-channel transformer-based framework applicable to both docking and 3D drug design tasks, which exploits their duality by utilizing docking functionalities within the drug design process. Specifically, we represent 3D pocket-ligand complexes using parallel sequences of discrete tokens and continuous numbers, and we design a corresponding dual-channel transformer model to handle this format, thereby overcoming the challenges of 3D information modeling. Additionally, we alleviate data limitations through large-scale pre-training on a mixed dataset, followed by supervised and reinforcement learning fine-tuning techniques respectively tailored for the two tasks. Experimental results demonstrate that 3DMolFormer outperforms previous approaches in both protein-ligand docking and pocket-aware 3D drug design, highlighting its promising application in structure-based drug discovery. The code is available at: https://github.com/HXYfighter/3DMolFormer .
Related papers
- GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.
We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.
GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
Cross-D Conv operation bridges the dimensional gap by learning the phase shifting in the Fourier domain.
Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning.
arXiv Detail & Related papers (2024-11-02T13:03:44Z) - Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design [21.666641467687214]
We formulate dual-target drug design as a generative task and curate a novel dataset of potential target pairs based on synergistic drug combinations.
We propose to design dual-target drugs with diffusion models that are trained on single-target protein-ligand complex pairs.
Our algorithm can well transfer the knowledge gained in single-target pretraining to dual-target scenarios in a zero-shot manner.
arXiv Detail & Related papers (2024-10-28T02:48:31Z) - Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [8.07701188057789]
We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data.
Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues.
Our method achieves up to 85% of the fully-supervised performance using only 10% labeled data.
arXiv Detail & Related papers (2024-08-21T12:13:18Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
We propose a structured 3D-aware regularizer which interfaces multiple tasks through the projection of features extracted from an image encoder to a shared 3D feature space.
We show that the proposed method is architecture agnostic and can be plugged into various prior multi-task backbones to improve their performance.
arXiv Detail & Related papers (2023-10-02T08:49:56Z) - Weakly-supervised 3D Pose Transfer with Keypoints [57.66991032263699]
Main challenges of 3D pose transfer are: 1) Lack of paired training data with different characters performing the same pose; 2) Disentangling pose and shape information from the target mesh; 3) Difficulty in applying to meshes with different topologies.
We propose a novel weakly-supervised keypoint-based framework to overcome these difficulties.
arXiv Detail & Related papers (2023-07-25T12:40:24Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z) - A Dual-Masked Auto-Encoder for Robust Motion Capture with
Spatial-Temporal Skeletal Token Completion [13.88656793940129]
We propose an adaptive, identity-aware triangulation module to reconstruct 3D joints and identify the missing joints for each identity.
We then propose a Dual-Masked Auto-Encoder (D-MAE) which encodes the joint status with both skeletal-structural and temporal position encoding for trajectory completion.
In order to demonstrate the proposed model's capability in dealing with severe data loss scenarios, we contribute a high-accuracy and challenging motion capture dataset.
arXiv Detail & Related papers (2022-07-15T10:00:43Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.