Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design
- URL: http://arxiv.org/abs/2410.20688v2
- Date: Tue, 26 Nov 2024 07:26:29 GMT
- Title: Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design
- Authors: Xiangxin Zhou, Jiaqi Guan, Yijia Zhang, Xingang Peng, Liang Wang, Jianzhu Ma,
- Abstract summary: We formulate dual-target drug design as a generative task and curate a novel dataset of potential target pairs based on synergistic drug combinations.
We propose to design dual-target drugs with diffusion models that are trained on single-target protein-ligand complex pairs.
Our algorithm can well transfer the knowledge gained in single-target pretraining to dual-target scenarios in a zero-shot manner.
- Score: 21.666641467687214
- License:
- Abstract: Dual-target therapeutic strategies have become a compelling approach and attracted significant attention due to various benefits, such as their potential in overcoming drug resistance in cancer therapy. Considering the tremendous success that deep generative models have achieved in structure-based drug design in recent years, we formulate dual-target drug design as a generative task and curate a novel dataset of potential target pairs based on synergistic drug combinations. We propose to design dual-target drugs with diffusion models that are trained on single-target protein-ligand complex pairs. Specifically, we align two pockets in 3D space with protein-ligand binding priors and build two complex graphs with shared ligand nodes for SE(3)-equivariant composed message passing, based on which we derive a composed drift in both 3D and categorical probability space in the generative process. Our algorithm can well transfer the knowledge gained in single-target pretraining to dual-target scenarios in a zero-shot manner. We also repurpose linker design methods as strong baselines for this task. Extensive experiments demonstrate the effectiveness of our method compared with various baselines.
Related papers
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
We propose a novel model termed Co-guiding Net, which implements a two-stage framework achieving the mutual guidances between the two tasks.
For the first stage, we propose single-task supervised contrastive learning, and for the second stage, we propose co-guiding supervised contrastive learning.
Experiment results on multi-intent SLU show that our model outperforms existing models by a large margin.
arXiv Detail & Related papers (2023-11-22T08:06:22Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
Drug-target interaction (DTI) prediction aims at predicting whether a drug will be bounded to a target.
Most of the recently proposed methods use single drug-drug similarity and target-target similarity information for DTI prediction.
We propose a network-based drug-target interaction prediction approach.
arXiv Detail & Related papers (2023-06-25T02:30:38Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules that bind to a disease-related protein (targets)
We propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior.
arXiv Detail & Related papers (2022-11-28T22:59:46Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
arXiv Detail & Related papers (2022-10-24T15:51:21Z) - Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
Generative Models for Therapeutic Candidates [11.853524110656991]
We look at the therapeutic design of novel drug candidates targeting SARS-CoV-2 viral proteins.
We use an autoencoder that generates molecules with similar structures to a dataset of drugs with anti-SARS activity.
During generation, we explore optimization toward several design targets to balance druglikeness, synthetic accessability, and anti-SARS activity.
arXiv Detail & Related papers (2021-05-07T18:39:25Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.