TransDiffSBDD: Causality-Aware Multi-Modal Structure-Based Drug Design
- URL: http://arxiv.org/abs/2503.20913v1
- Date: Wed, 26 Mar 2025 18:35:34 GMT
- Title: TransDiffSBDD: Causality-Aware Multi-Modal Structure-Based Drug Design
- Authors: Xiuyuan Hu, Guoqing Liu, Can Chen, Yang Zhao, Hao Zhang, Xue Liu,
- Abstract summary: We propose TransDiffSBDD, an integrated framework combining autoregressive transformers and diffusion models for structure-based drug design (SBDD)<n> Specifically, the autoregressive transformer models discrete molecular information, while the diffusion model samples continuous distributions, effectively resolving the first challenge.<n>To address the second challenge, we design a hybrid-modal sequence for protein-ligand complexes that explicitly respects the causal relationship between modalities.
- Score: 17.78777622199143
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Structure-based drug design (SBDD) is a critical task in drug discovery, requiring the generation of molecular information across two distinct modalities: discrete molecular graphs and continuous 3D coordinates. However, existing SBDD methods often overlook two key challenges: (1) the multi-modal nature of this task and (2) the causal relationship between these modalities, limiting their plausibility and performance. To address both challenges, we propose TransDiffSBDD, an integrated framework combining autoregressive transformers and diffusion models for SBDD. Specifically, the autoregressive transformer models discrete molecular information, while the diffusion model samples continuous distributions, effectively resolving the first challenge. To address the second challenge, we design a hybrid-modal sequence for protein-ligand complexes that explicitly respects the causality between modalities. Experiments on the CrossDocked2020 benchmark demonstrate that TransDiffSBDD outperforms existing baselines.
Related papers
- Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling [80.59215359958934]
3D molecule generation is crucial for drug discovery and material science.<n>Existing approaches typically maintain separate latent spaces for invariant and equivariant modalities.<n>We propose a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space.
arXiv Detail & Related papers (2025-03-19T08:56:13Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - Non-Cross Diffusion for Semantic Consistency [12.645444338043934]
We introduce Non-Cross Diffusion', an innovative approach in generative modeling for learning ordinary differential equation (ODE) models.
Our methodology strategically incorporates an ascending dimension of input to effectively connect points sampled from two distributions with uncrossed paths.
arXiv Detail & Related papers (2023-11-30T05:53:39Z) - FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and
Multi-Clients [32.59184269562571]
We propose a multi-modal collaborative diffusion federated learning framework called FedDiff.
Our framework establishes a dual-branch diffusion model feature extraction setup, where the two modal data are inputted into separate branches of the encoder.
Considering the challenge of private and efficient communication between multiple clients, we embed the diffusion model into the federated learning communication structure.
arXiv Detail & Related papers (2023-11-16T02:29:37Z) - MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network [7.889342625283858]
Deep generative models are promising in detecting novel cyber-physical attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without relying on labeled information.
This article proposes a novel unsupervised dual variational generative adversarial model named MST-DVGAN.
The central concept is to enhance the model's discriminative capability by widening the distinction between reconstructed abnormal samples and their normal counterparts.
arXiv Detail & Related papers (2023-11-04T11:19:03Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
Incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition.
We propose the Hierarchical Crossmodal Transformer with Dynamic Modality Gating (HCT-DMG), a lightweight incongruity-aware model.
HCT-DMG: 1) outperforms previous multimodal models with a reduced size of approximately 0.8M parameters; 2) recognizes hard samples where incongruity makes affect recognition difficult; 3) mitigates the incongruity at the latent level in crossmodal attention.
arXiv Detail & Related papers (2023-05-23T01:24:15Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
arXiv Detail & Related papers (2022-10-24T15:51:21Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.