Distinguishing Cause from Effect with Causal Velocity Models
- URL: http://arxiv.org/abs/2502.05122v1
- Date: Fri, 07 Feb 2025 17:50:14 GMT
- Title: Distinguishing Cause from Effect with Causal Velocity Models
- Authors: Johnny Xi, Hugh Dance, Peter Orbanz, Benjamin Bloem-Reddy,
- Abstract summary: We develop a method for causal discovery that extends beyond known model classes such as additive or location scale noise.
When the score is estimated well, the objective is also useful for detecting model non-identifiability and misspecification.
- Score: 3.0523869645673076
- License:
- Abstract: Bivariate structural causal models (SCM) are often used to infer causal direction by examining their goodness-of-fit under restricted model classes. In this paper, we describe a parametrization of bivariate SCMs in terms of a causal velocity by viewing the cause variable as time in a dynamical system. The velocity implicitly defines counterfactual curves via the solution of initial value problems where the observation specifies the initial condition. Using tools from measure transport, we obtain a unique correspondence between SCMs and the score function of the generated distribution via its causal velocity. Based on this, we derive an objective function that directly regresses the velocity against the score function, the latter of which can be estimated non-parametrically from observational data. We use this to develop a method for bivariate causal discovery that extends beyond known model classes such as additive or location scale noise, and that requires no assumptions on the noise distributions. When the score is estimated well, the objective is also useful for detecting model non-identifiability and misspecification. We present positive results in simulation and benchmark experiments where many existing methods fail, and perform ablation studies to examine the method's sensitivity to accurate score estimation.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
Student's $t$-distribution is known for its robustness in accounting for sampling variability with smaller sample sizes and extreme values without significantly altering the overall distribution shape.
Our empirical evaluations demonstrate that our estimators are more robust and achieve better overall performance across synthetic and real benchmarks.
arXiv Detail & Related papers (2023-12-15T02:26:35Z) - Cause-Effect Inference in Location-Scale Noise Models: Maximum
Likelihood vs. Independence Testing [19.23479356810746]
A fundamental problem of causal discovery is cause-effect inference, learning the correct causal direction between two random variables.
Recently introduced heteroscedastic location-scale noise functional models (LSNMs) combine expressive power with identifiability guarantees.
We show that LSNM model selection based on maximizing likelihood achieves state-of-the-art accuracy, when the noise distributions are correctly specified.
arXiv Detail & Related papers (2023-01-26T20:48:32Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Causal Inference in Geoscience and Remote Sensing from Observational
Data [9.800027003240674]
We try to estimate the correct direction of causation using a finite set of empirical data.
We illustrate performance in a collection of 28 geoscience causal inference problems.
The criterion achieves state-of-the-art detection rates in all cases, it is generally robust to noise sources and distortions.
arXiv Detail & Related papers (2020-12-07T22:56:55Z) - Causal Autoregressive Flows [4.731404257629232]
We highlight an intrinsic correspondence between a simple family of autoregressive normalizing flows and identifiable causal models.
We exploit the fact that autoregressive flow architectures define an ordering over variables, analogous to a causal ordering, to show that they are well-suited to performing a range of causal inference tasks.
arXiv Detail & Related papers (2020-11-04T13:17:35Z) - An Analysis of the Adaptation Speed of Causal Models [80.77896315374747]
Recently, Bengio et al. conjectured that among all candidate models, $G$ is the fastest to adapt from one dataset to another.
We investigate the adaptation speed of cause-effect SCMs using convergence rates from optimization.
Surprisingly, we find situations where the anticausal model is advantaged, falsifying the initial hypothesis.
arXiv Detail & Related papers (2020-05-18T23:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.