論文の概要: Blackout DIFUSCO
- arxiv url: http://arxiv.org/abs/2502.05221v1
- Date: Wed, 05 Feb 2025 17:24:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:20.073885
- Title: Blackout DIFUSCO
- Title(参考訳): Blackout (複数形 Blackouts)
- Authors: Jun Pyo Seo,
- Abstract要約: 本研究では,トラベリングセールスマン問題(TSP)を対象とする最適化のためのDIFUSCOフレームワークへのブラックアウト拡散の統合について検討する。
構造的整合性を維持する上での離散時間拡散モデル(D3PM)の成功に触発されて、ブラックアウト拡散のユニークな性質を利用して、このパラダイムを連続時間フレームワークに拡張する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study explores the integration of Blackout Diffusion into the DIFUSCO framework for combinatorial optimization, specifically targeting the Traveling Salesman Problem (TSP). Inspired by the success of discrete-time diffusion models (D3PM) in maintaining structural integrity, we extend the paradigm to a continuous-time framework, leveraging the unique properties of Blackout Diffusion. Continuous-time modeling introduces smoother transitions and refined control, hypothesizing enhanced solution quality over traditional discrete methods. We propose three key improvements to enhance the diffusion process. First, we transition from a discrete-time-based model to a continuous-time framework, providing a more refined and flexible formulation. Second, we refine the observation time scheduling to ensure a smooth and linear transformation throughout the diffusion process, allowing for a more natural progression of states. Finally, building upon the second improvement, we further enhance the reverse process by introducing finer time slices in regions that are particularly challenging for the model, thereby improving accuracy and stability in the reconstruction phase. Although the experimental results did not exceed the baseline performance, they demonstrate the effectiveness of these methods in balancing simplicity and complexity, offering new insights into diffusion-based combinatorial optimization. This work represents the first application of Blackout Diffusion to combinatorial optimization, providing a foundation for further advancements in this domain. * The code is available for review at https://github.com/Giventicket/BlackoutDIFUSCO.
- Abstract(参考訳): 本研究では,特にトラベリングセールスマン問題(TSP)を対象として,組換え最適化のためのDIFUSCOフレームワークへのブラックアウト拡散の統合について検討する。
構造的整合性を維持する上での離散時間拡散モデル(D3PM)の成功に触発されて、ブラックアウト拡散のユニークな性質を利用して、このパラダイムを連続時間フレームワークに拡張する。
継続的時間モデリングは、よりスムーズな遷移と洗練された制御を導入し、従来の離散メソッドよりも高度なソリューション品質を仮定する。
本稿では拡散過程を改善するために3つの重要な改善点を提案する。
まず、離散時間モデルから継続的時間フレームワークへ移行し、より洗練され柔軟な定式化を提供します。
第2に,拡散過程のスムーズかつ線形な変換を保証するため,観測時間スケジューリングを改良し,より自然な状態の進行を可能にする。
最後に, モデルに特に難易度の高い領域に細かな時間スライスを導入し, 復元フェーズの精度と安定性を向上させることにより, 逆工程をさらに強化する。
実験結果はベースライン性能を超えなかったが、単純さと複雑さのバランスをとる上でこれらの手法の有効性を実証し、拡散に基づく組合せ最適化の新しい洞察を提供した。
この研究は、組合せ最適化へのブラックアウト拡散の最初の応用であり、この領域のさらなる進歩の基礎となる。
https://github.com/Giventicket/BlackoutDIFUSCO.comでレビューすることができる。
関連論文リスト
- Adaptive Non-Uniform Timestep Sampling for Diffusion Model Training [4.760537994346813]
データ分布が複雑化するにつれて、収束のためのトレーニング拡散モデルがますます複雑になる。
より重要な時間ステップを優先する一様でない時間ステップサンプリング手法を提案する。
提案手法は, 各種データセット, スケジューリング戦略, 拡散アーキテクチャにまたがるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-11-15T07:12:18Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSRは、事前訓練された拡散モデルの生成力を生かしたドメインシフト拡散に基づくSRモデルである。
このアプローチの核となるのは、既存の拡散モデルとシームレスに統合されるドメインシフト方程式です。
提案手法は, 合成および実世界のデータセットに対して, 5つのサンプリングステップしか必要とせず, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T12:16:11Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-06-14T13:16:18Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - Memory-Efficient Fine-Tuning for Quantized Diffusion Model [12.875837358532422]
本稿では,量子化拡散モデルのためのメモリ効率の良い微調整手法であるTuneQDMを紹介する。
提案手法は, 単目的/多目的の両方の世代において, ベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-01-09T03:42:08Z) - DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral
Diffusion Model [18.25548360119976]
マルチスペクトル画像(MSI)におけるスナップショット圧縮画像(SCI)再構成の精度向上を目指した。
DiffSCIと呼ばれる新しいゼロショット拡散モデルを提案する。
我々は,DiffSCIが自己監督的,ゼロショット的アプローチよりも顕著な性能向上を示すことを示すため,広範囲な試験を行った。
論文 参考訳(メタデータ) (2023-11-19T20:27:14Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。