論文の概要: Is attention all you need to solve the correlated electron problem?
- arxiv url: http://arxiv.org/abs/2502.05383v2
- Date: Mon, 10 Mar 2025 02:05:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:39:25.466821
- Title: Is attention all you need to solve the correlated electron problem?
- Title(参考訳): 電子の相関問題を解くのに注意は必要か?
- Authors: Max Geier, Khachatur Nazaryan, Timothy Zaklama, Liang Fu,
- Abstract要約: 我々は、固体中の相互作用する電子問題を解くために、自己アテンションアンサッツを用いることができることを示した。
モワール量子材料に関するシステマティック・ニューラル・ネットワークの変動型モンテカルロによる研究により、自己注意型アンサッツが正確で効率的で偏りのない解を提供することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The attention mechanism has transformed artificial intelligence research by its ability to learn relations between objects. In this work, we explore how a many-body wavefunction ansatz constructed from a large-parameter self-attention neural network can be used to solve the interacting electron problem in solids. By a systematic neural-network variational Monte Carlo study on a moir\'e quantum material, we demonstrate that the self-attention ansatz provides an accurate, efficient, and unbiased solution. Moreover, our numerical study finds that the required number of variational parameters scales roughly as $N^2$ with the number of electrons, which opens a path towards efficient large-scale simulations.
- Abstract(参考訳): 注目メカニズムは、物体間の関係を学習する能力によって、人工知能の研究を変革した。
本研究では, 固体中の相互作用電子問題を解くために, 大規模自己アテンション型ニューラルネットワークを用いて構築した多体波動関数アンザッツをどのように利用することができるかを検討する。
モワール量子材料に関する系統的ニューラルネットワークの変分モンテカルロによる研究により、自己注意型アンサッツが正確で効率的で偏りのない解を提供することを示した。
さらに, 所要量の変動パラメータは電子数で約$N^2$とスケールし, より効率的な大規模シミュレーションへの道を開いた。
関連論文リスト
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
線形応答によって支配される異なる反応を記述することに関連する応答関数の量子アルゴリズムについて検討する。
我々は原子核物理学の応用に焦点をあて、格子上の量子ビット効率のマッピングを検討し、現実的な散乱シミュレーションに必要な大量の量を効率的に表現することができる。
論文 参考訳(メタデータ) (2024-03-30T00:21:46Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
平均場近似を超越したフェルミオン時間依存波動関数に対する変動的アプローチを提案する。
ニューラルネットワークのパラメータ化によって拡張された時間依存のJastrow因子とバックフロー変換を使用します。
この結果は、時間進化を正確に捉え、相互作用する電子系の量子力学に関する洞察を与える、我々の変分的アプローチの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T09:37:22Z) - Finding the Dynamics of an Integrable Quantum Many-Body System via
Machine Learning [0.0]
学習手法を用いて,ガウディン磁石(中心スピンモデル)の力学について検討する。
この直感によって部分的に動機付けられ、モデルハミルトニアンの各変分固有状態に対してニューラル・ネットワーク表現を用いる。
この感受性の効率的な説明を持つことで、量子二段階系の環境と相互作用する量子ビットのキャラクタリゼーションと量子制御手順の改善への扉を開くことができる。
論文 参考訳(メタデータ) (2023-07-06T21:49:01Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
我々は、cQDOモデルがフォトニック量子コンピュータ上でのシミュレーションに自然に役立っていることを示す。
我々は、XanaduのStrawberry Fieldsフォトニクスライブラリを利用して、二原子系の結合エネルギー曲線を計算する。
興味深いことに、2つの結合したボソニックQDOは安定な結合を示す。
論文 参考訳(メタデータ) (2023-06-14T14:44:12Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
本稿では、自己注意型ウェーブファンクショントランス(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
我々は、Psiformerを他のニューラルネットワークのドロップイン代替として使用することができ、計算精度を劇的に向上させることができることを示した。
これは、自己アテンションネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達するための有望な経路であることを示している。
論文 参考訳(メタデータ) (2022-11-24T15:38:55Z) - Ab-initio quantum chemistry with neural-network wavefunctions [2.3306857544105686]
分子科学における機械学習の主な応用は、ポテンシャルエネルギー表面や力場を学習することである。
本稿では,ニューラルネットワークアンサッツ関数を用いた量子モンテカルロ法(QMC)に着目し,電子式Schr"odingerの解法を提案する。
論文 参考訳(メタデータ) (2022-08-26T11:33:31Z) - So3krates -- Self-attention for higher-order geometric interactions on
arbitrary length-scales [2.1485350418225244]
分子や物質の量子力学的性質は非局所電子効果に依存する。
この研究は、基礎となる物理学に適応した改良された注意機構を提案する。
提案したモデルであるSo3kratesは任意の長さスケールで非局所量子力学的効果を記述することができる。
論文 参考訳(メタデータ) (2022-05-28T00:01:30Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。