B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
- URL: http://arxiv.org/abs/2412.17256v1
- Date: Mon, 23 Dec 2024 03:58:34 GMT
- Title: B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
- Authors: Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang, Zifei Shan, Junxian He,
- Abstract summary: Self-improvement has emerged as a primary method for enhancing performance.
We identify and propose methods to monitor two pivotal factors in this iterative process.
We introduce B-STaR, a Self-Taught Reasoning framework that adjusts configurations across iterations to balance exploration and exploitation.
- Score: 18.960920426485163
- License:
- Abstract: In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.
Related papers
- Iterative Deepening Sampling for Large Language Models [27.807695570974644]
Training models to achieve effective self-correction and self-correction remains a significant challenge.
We propose a novel iterative sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
arXiv Detail & Related papers (2025-02-08T04:39:51Z) - Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1-like reasoning systems have demonstrated remarkable capabilities in solving complex reasoning tasks.
We introduce an imitate, explore, and self-improve'' framework to train the reasoning model.
Our approach achieves competitive performance compared to industry-level reasoning systems.
arXiv Detail & Related papers (2024-12-12T16:20:36Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance [0.0]
Reinforcement learning (RL) faces its own set of unique challenges.
Comparison of point estimates, and plots that show successful convergence to the optimal policy during training, may obfuscate overfitting or dependence on the experimental setup.
We propose a set of evaluation methods that measure the robustness of RL algorithms under distribution shifts.
arXiv Detail & Related papers (2024-02-05T23:50:55Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
No-box adversarial attacks are becoming more practical and challenging for AI systems.
This paper recasts adversarial attack as a downstream task by introducing foundational models as surrogate models.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Reinforcement Learning through Active Inference [62.997667081978825]
We show how ideas from active inference can augment traditional reinforcement learning approaches.
We develop and implement a novel objective for decision making, which we term the free energy of the expected future.
We demonstrate that the resulting algorithm successfully exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
arXiv Detail & Related papers (2020-02-28T10:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.