論文の概要: Potential Based Diffusion Motion Planning
- arxiv url: http://arxiv.org/abs/2407.06169v1
- Date: Mon, 8 Jul 2024 17:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 14:30:11.038591
- Title: Potential Based Diffusion Motion Planning
- Title(参考訳): 電位に基づく拡散運動計画
- Authors: Yunhao Luo, Chen Sun, Joshua B. Tenenbaum, Yilun Du,
- Abstract要約: 本稿では,潜在的行動計画の学習に向けた新しいアプローチを提案する。
我々はニューラルネットワークを訓練し、運動計画軌跡よりも容易に最適化可能なポテンシャルを捕捉し、学習する。
我々は、その固有の構成可能性を示し、様々な動きの制約に一般化することができる。
- 参考スコア(独自算出の注目度): 73.593988351275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective motion planning in high dimensional spaces is a long-standing open problem in robotics. One class of traditional motion planning algorithms corresponds to potential-based motion planning. An advantage of potential based motion planning is composability -- different motion constraints can be easily combined by adding corresponding potentials. However, constructing motion paths from potentials requires solving a global optimization across configuration space potential landscape, which is often prone to local minima. We propose a new approach towards learning potential based motion planning, where we train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories. We illustrate the effectiveness of such approach, significantly outperforming both classical and recent learned motion planning approaches and avoiding issues with local minima. We further illustrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
- Abstract(参考訳): 高次元空間における効果的な運動計画は、ロボット工学における長年のオープンな問題である。
従来の動き計画アルゴリズムの1つのクラスは、ポテンシャルに基づく動き計画に対応する。
ポテンシャルに基づく運動計画の利点は構成可能性であり、異なる運動制約を対応するポテンシャルを追加することで簡単に組み合わせることができる。
しかし、ポテンシャルから運動経路を構築するには、しばしば局所ミニマになるような構成空間ポテンシャルランドスケープ全体にわたる大域的最適化の解決が必要である。
そこで我々は、ニューラルネットワークをトレーニングして、運動計画軌跡よりも容易に最適化可能なポテンシャルを捕捉し学習する、ポテンシャルに基づく運動計画学習への新たなアプローチを提案する。
本稿では,従来の学習行動計画手法と近年の学習行動計画手法の両方を著しく上回り,局所的なミニマ問題を回避する手法の有効性について述べる。
さらに、その固有の構成可能性を説明し、様々な動きの制約に一般化できるようにする。
関連論文リスト
- Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning [5.982922468400902]
システムが動的に変化する環境に適応するためには、高速なキノダイナミックな運動計画が不可欠である。
本稿では,新しいニューラルネットワークモデル,その微分可能な運動マニフォールドプリミティブ(DMMP)と実践的なトレーニング戦略を提案する。
任意の目標位置への動的投球を行う7-DoFロボットアームを用いた実験により,提案手法が計画速度,タスク成功,制約満足度といった既存手法を超えることを示した。
論文 参考訳(メタデータ) (2024-10-16T03:29:33Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
本稿では,制約多様体の概念を利用した新しい学習計画フレームワークを提案する。
我々の手法は任意の制約を満たす計画を生成し、ニューラルネットワークの推論時間という短い一定時間でそれらを計算する。
我々は,2つのシミュレートされたタスクと,ロボット・エアホッケーにおける打撃動作を実行するために,クカ・LBRIiwa 14ロボットアームを用いた実世界のシナリオに対して,我々のアプローチを検証した。
論文 参考訳(メタデータ) (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
学習の観点から,センサを用いたモーションプランニングに対処する。
近年の視覚認識の進歩により,運動計画における適切な表現の学習の重要性が議論されている。
本稿では,PointNetアーキテクチャに基づく新しい障害物表現を提案し,障害物回避ポリシーと共同で学習する。
論文 参考訳(メタデータ) (2020-08-25T17:12:32Z) - Neural Manipulation Planning on Constraint Manifolds [13.774614900994342]
マルチモーダルキネマティック制約に対する最初のニューラルプランナーであるConstrained Motion Planning Networks (CoMPNet)を提案する。
我々は,制約のない問題と制約のない問題の両方を含む実用的な動作計画タスクを,CoMPNetが解決していることを示す。
トレーニング中に見えないような、高い成功率の環境において、オブジェクトの新しい見えない場所に一般化する。
論文 参考訳(メタデータ) (2020-08-09T18:58:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。