論文の概要: Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning
- arxiv url: http://arxiv.org/abs/2410.12193v1
- Date: Wed, 16 Oct 2024 03:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:24.299145
- Title: Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning
- Title(参考訳): 高速かつ適応的な運動計画のための軌道多様体最適化
- Authors: Yonghyeon Lee,
- Abstract要約: システムが動的に変化する環境に適応するためには、高速なキノダイナミックな運動計画が不可欠である。
本稿では,新しいニューラルネットワークモデル,その微分可能な運動マニフォールドプリミティブ(DMMP)と実践的なトレーニング戦略を提案する。
任意の目標位置への動的投球を行う7-DoFロボットアームを用いた実験により,提案手法が計画速度,タスク成功,制約満足度といった既存手法を超えることを示した。
- 参考スコア(独自算出の注目度): 5.982922468400902
- License:
- Abstract: Fast kinodynamic motion planning is crucial for systems to effectively adapt to dynamically changing environments. Despite some efforts, existing approaches still struggle with rapid planning in high-dimensional, complex problems. Not surprisingly, the primary challenge arises from the high-dimensionality of the search space, specifically the trajectory space. We address this issue with a two-step method: initially, we identify a lower-dimensional trajectory manifold {\it offline}, comprising diverse trajectories specifically relevant to the task at hand while meeting kinodynamic constraints. Subsequently, we search for solutions within this manifold {\it online}, significantly enhancing the planning speed. To encode and generate a manifold of continuous-time, differentiable trajectories, we propose a novel neural network model, {\it Differentiable Motion Manifold Primitives (DMMP)}, along with a practical training strategy. Experiments with a 7-DoF robot arm tasked with dynamic throwing to arbitrary target positions demonstrate that our method surpasses existing approaches in planning speed, task success, and constraint satisfaction.
- Abstract(参考訳): システムが動的に変化する環境に効果的に適応するためには、高速なキノダイナミック・モーション・プランニングが不可欠である。
いくつかの努力にもかかわらず、既存のアプローチは高次元の複雑な問題において、迅速な計画に苦戦している。
当然のことながら、主な課題は探索空間、特に軌道空間の高次元性から生じる。
最初は、キノダイナミック制約を満たしながら、手作業に特に関係する様々な軌跡を含む低次元の軌跡多様体 {\it offline} を同定する。
その後、この多様体 {\it online} 内の解を探索し、計画速度を著しく向上させる。
連続時間・微分可能な軌道の多様体を符号化し生成するために,新しいニューラルネットワークモデル (DMMP) を提案する。
任意の目標位置への動的投球を行う7-DoFロボットアームを用いた実験により,提案手法が計画速度,タスク成功,制約満足度といった既存手法を超えることを示した。
関連論文リスト
- Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization [0.0]
障害物の存在下でのマルチエージェントシステムの動的運動計画は普遍的で未解決な問題である。
本稿では,学習に基づく動的ナビゲーションモデルを提案し,シンプルなRobosoccer Gameの概念を用いて,シンプルな環境で動作するモデルを示す。
論文 参考訳(メタデータ) (2025-02-08T11:13:07Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - Potential Based Diffusion Motion Planning [73.593988351275]
本稿では,潜在的行動計画の学習に向けた新しいアプローチを提案する。
我々はニューラルネットワークを訓練し、運動計画軌跡よりも容易に最適化可能なポテンシャルを捕捉し、学習する。
我々は、その固有の構成可能性を示し、様々な動きの制約に一般化することができる。
論文 参考訳(メタデータ) (2024-07-08T17:48:39Z) - Physics-informed Neural Motion Planning on Constraint Manifolds [6.439800184169697]
Constrained Motion Planning (CMP) は、運動論的制約多様体上の与えられた開始と目標設定の間の衝突のない経路を見つけることを目的としている。
制約多様体上のアイコン方程式を解き、専門家データなしでCMPの神経機能を訓練する最初の物理インフォームドCMPフレームワークを提案する。
提案手法は,方向制約下での物体操作や,高次元6-DOFロボットマニピュレータを用いたドア開口など,シミュレーションおよび実世界の様々なCMP問題を効率的に解決する。
論文 参考訳(メタデータ) (2024-03-09T02:24:02Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
本稿では,制約多様体の概念を利用した新しい学習計画フレームワークを提案する。
我々の手法は任意の制約を満たす計画を生成し、ニューラルネットワークの推論時間という短い一定時間でそれらを計算する。
我々は,2つのシミュレートされたタスクと,ロボット・エアホッケーにおける打撃動作を実行するために,クカ・LBRIiwa 14ロボットアームを用いた実世界のシナリオに対して,我々のアプローチを検証した。
論文 参考訳(メタデータ) (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Constrained Motion Planning Networks X [15.047777217748889]
拘束運動計画ネットワークX(CoMPNetX)について述べる。
これはニューラルプランニングアプローチであり、条件付きディープニューラルジェネレータとニューラルグラデーションベースの高速投射演算子を持つ判別器から構成される。
提案手法は,従来のパスフィニングツールよりも高い成功率と低い時間で経路解を求める。
論文 参考訳(メタデータ) (2020-10-17T03:34:38Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。