論文の概要: ARIES: Stimulating Self-Refinement of Large Language Models by Iterative Preference Optimization
- arxiv url: http://arxiv.org/abs/2502.05605v1
- Date: Sat, 08 Feb 2025 15:21:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:57.599750
- Title: ARIES: Stimulating Self-Refinement of Large Language Models by Iterative Preference Optimization
- Title(参考訳): ARIES: 反復選好最適化による大規模言語モデルの自己精製の促進
- Authors: Yongcheng Zeng, Xinyu Cui, Xuanfa Jin, Guoqing Liu, Zexu Sun, Quan He, Dong Li, Ning Yang, Jianye Hao, Haifeng Zhang, Jun Wang,
- Abstract要約: 真にインテリジェントなLarge Language Model (LLM) は、外部インタラクションを通じて応答のエラーを修正する能力を持つべきである。
ARIES: Adaptive Refinement and Iterative Enhancement Structure。
ARIESは、反復的に好みのトレーニングと自己修正に基づくデータ収集を行う。
- 参考スコア(独自算出の注目度): 34.77238246296517
- License:
- Abstract: A truly intelligent Large Language Model (LLM) should be capable of correcting errors in its responses through external interactions. However, even the most advanced models often face challenges in improving their outputs. In this paper, we explore how to cultivate LLMs with the self-refinement capability through iterative preference training, and how this ability can be leveraged to improve model performance during inference. To this end, we introduce a novel post-training and inference framework, called ARIES: Adaptive Refinement and Iterative Enhancement Structure. This method iteratively performs preference training and self-refinement-based data collection. During training, ARIES strengthen the model's direct question-answering capability while simultaneously unlocking its self-refinement potential. During inference, ARIES harnesses this self-refinement capability to generate a series of progressively refined responses, which are then filtered using either the Reward Model Scoring or a simple yet effective Rule-Based Selection mechanism, specifically tailored to our approach, to construct a dataset for the next round of preference training. Experimental results demonstrate the remarkable performance of ARIES. When applied to the Llama-3.1-8B model and under the self-refinement setting, ARIES surpasses powerful models such as GPT-4o, achieving 62.3% length-controlled (LC) and a 63.3% raw win rates on AlpacaEval 2, outperforming Iterative DPO by 27.8% and 35.5% respectively, as well as a 50.3% win rate on Arena-Hard, surpassing Iterative DPO by 26.6%. Furthermore, ARIES consistently enhances performance on mathematical reasoning tasks like GSM8K and MATH.
- Abstract(参考訳): 真にインテリジェントなLarge Language Model (LLM) は、外部インタラクションを通じて応答のエラーを修正する能力を持つべきである。
しかしながら、最も先進的なモデルでさえ、アウトプットを改善する上で、しばしば課題に直面します。
本稿では,反復的選好学習による自己補充能力によるLLMの育成方法と,推論時のモデル性能向上にどのように活用できるかを検討する。
この目的のために、ARIES: Adaptive Refinement and Iterative Enhancement Structureと呼ばれる新しいポストトレーニングおよび推論フレームワークを導入する。
この方法は、嗜好訓練と自己複製に基づくデータ収集を反復的に行う。
訓練中、ARIESはモデルの直接質問応答能力を強化し、同時に自己抑止能力を開放した。
推論において、ARIESは、この自己補充機能を活用して、一連の漸進的に洗練された応答を生成し、その後、Reward Model Scoringまたは単純で効果的なルールベース選択機構を用いてフィルタリングされ、特に我々のアプローチに合わせて、次の選好訓練ラウンドのためのデータセットを構築する。
ARIESの顕著な性能を示す実験結果を得た。
Llama-3.1-8Bモデルに適用され、自己補充設定の下で、ARIESはGPT-4oのような強力なモデルを超え、アルパカエバル2で62.3%、アルパカエバル2で63.3%、反復DPOで27.8%、35.5%、アレナ・ハードで50.3%、イテレーティブDPOで26.6%を上回った。
さらに、ARIESはGSM8KやMATHのような数学的推論タスクの性能を一貫して向上させる。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - From Drafts to Answers: Unlocking LLM Potential via Aggregation Fine-Tuning [31.95005389919542]
データスケールとモデルサイズは、大規模言語モデルの性能向上に有効であることが証明されている。
本稿では,教師付きファインチューニングパラダイムであるAggregation Fine-Tuning(AFT)を紹介する。
ベンチマークデータセットの実証評価では、AFT訓練されたモデルは標準のSFTよりも大幅に優れていた。
論文 参考訳(メタデータ) (2025-01-21T04:11:59Z) - FORLAPS: An Innovative Data-Driven Reinforcement Learning Approach for Prescriptive Process Monitoring [3.4437362489150254]
本研究は,9つの公開データセットを用いた先行研究に対して,その性能をベンチマークする,革新的な評価モデルを提案する。
提案モデルであるFOLAPSは、プロセストレース内で最も最適なポリシーを提案し、最もよい次のアクティビティを予測するために、既存の最先端アプローチよりも優れたパフォーマンスを示した。
論文 参考訳(メタデータ) (2025-01-17T20:31:35Z) - Evolving Alignment via Asymmetric Self-Play [52.3079697845254]
本稿では、2人のプレーヤー間の非対称ゲームとしてアライメントをキャストする一般オープンエンドなRLHFフレームワークを提案する。
Asymmetric Self-Play (eva) によるアライメントの進化(Evolving Alignment)というこのフレームワークは、既存のRLHFアルゴリズムを拡張性のあるアライメントに利用できるシンプルで効率的なアプローチをもたらす。
論文 参考訳(メタデータ) (2024-10-31T08:15:32Z) - Just Say What You Want: Only-prompting Self-rewarding Online Preference Optimization [64.34767799614328]
現在の自己回帰アプローチは、差別者の判断能力に大きく依存している。
本稿では,判断能力に頼らずに嗜好データセットを生成する,新たな自己回帰型オンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-26T04:41:08Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
本研究では,Large Language Models (LLM) の継続事前学習における挙動について検討する。
固定された計算予算内でのLLM性能を向上させるための3つの効果的な戦略を提案する。
当社の戦略は,OpenLlama-3Bモデルの平均医療タスク性能を36.2%から40.7%に改善し,当初のトレーニング予算の40%に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-21T02:28:37Z) - Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences [21.5605000515622]
本稿では,大言語モデル(LLM)の学習後,オラクルからの嗜好フィードバックを用いて,モデル自体を反復的に改善する手法について検討する。
提案手法は,理論的な一般化と対照的な学習の単純さと安定性を,一般の選好の最適化からマージする,証明可能かつ効率的なアルゴリズムである。
実験で得られた 7B パラメータ Orca-2.5 モデルは,AlpacaE 2.0 上で 33% の GPT-4-Turbo に対して,初期化モデルに対して 26% (7% から 33%) の絶対ゲインを達成した。
論文 参考訳(メタデータ) (2024-04-04T17:56:41Z) - Aligner: Efficient Alignment by Learning to Correct [10.056049435141645]
モデルに依存しないプラグアンドプレイモジュールであるAlignerを導入し、好ましくない回答と好ましくない回答の補正残差を学習する。
トレーニングはワンオフで、さまざまなオープンソースおよびAPIベースのモデルに適用できるため、迅速なイテレーションに適している。
実験では、11の異なる言語モデルに同じAlignerモデルをデプロイすることで、パフォーマンスの向上を実証した。
論文 参考訳(メタデータ) (2024-02-04T09:24:51Z) - DavIR: Data Selection via Implicit Reward for Large Language Models [62.59514469369608]
DavIRは、学習後の大規模言語モデルのためのモデルベースのデータ選択手法である。
DavIRで選択したAlpacaデータセットの6%は、LLaMAモデルとGemmaモデルの両方を操り、フル52Kデータセットでトレーニングされたモデルと比較すると、優れたパフォーマンスが得られる。
論文 参考訳(メタデータ) (2023-10-16T07:26:24Z) - RAIN: Your Language Models Can Align Themselves without Finetuning [25.703729145091483]
大型言語モデル(LLM)は人間の好みと矛盾することが多い。
本研究では,不整合 LLM が自己ブーイングによって直接人間の嗜好に整合した応答を生成可能であることを示す。
本稿では,自己回帰推論(Rewindable Auto-Regressive Inference)という新しい推論手法を導入する。
論文 参考訳(メタデータ) (2023-09-13T17:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。