ML DevOps Adoption in Practice: A Mixed-Method Study of Implementation Patterns and Organizational Benefits
- URL: http://arxiv.org/abs/2502.05634v1
- Date: Sat, 08 Feb 2025 16:37:24 GMT
- Title: ML DevOps Adoption in Practice: A Mixed-Method Study of Implementation Patterns and Organizational Benefits
- Authors: Dileepkumar S R, Juby Mathew,
- Abstract summary: Machine Learning (ML) DevOps, also known as MLOps, has emerged as a critical framework for efficiently operationalizing ML models in various industries.
This study investigates the adoption trends, implementation efforts, and benefits of ML DevOps through a combination of literature and empirical analysis.
- Score: 0.0
- License:
- Abstract: Machine Learning (ML) DevOps, also known as MLOps, has emerged as a critical framework for efficiently operationalizing ML models in various industries. This study investigates the adoption trends, implementation efforts, and benefits of ML DevOps through a combination of literature review and empirical analysis. By surveying 150 professionals across industries and conducting in-depth interviews with 20 practitioners, the study provides insights into the growing adoption of ML DevOps, particularly in sectors like finance and healthcare. The research identifies key challenges, such as fragmented tooling, data management complexities, and skill gaps, which hinder widespread adoption. However, the findings highlight significant benefits, including improved deployment frequency, reduced error rates, enhanced collaboration between data science and DevOps teams, and lower operational costs. Organizations leveraging ML DevOps report accelerated model deployment, increased scalability, and better compliance with industry regulations. The study also explores the technical and cultural efforts required for successful implementation, such as investments in automation tools, real-time monitoring, and upskilling initiatives. The results indicate that while challenges remain, ML DevOps presents a viable path to optimizing ML lifecycle management, ensuring model reliability, and enhancing business value. Future research should focus on standardizing ML DevOps practices, assessing the return on investment across industries, and developing frameworks for seamless integration with traditional DevOps methodologies
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - A Framework for Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
Large Language Models (LLMs) have transformed Software Engineering (SE) by providing innovative methods for analyzing software repositories.
Our research packages a framework, coined Prompt Refinement and Insights for Mining Empirical Software repositories (PRIMES)
Our findings indicate that standardizing prompt engineering and using PRIMES can enhance the reliability and accuracy of studies utilizing LLMs.
arXiv Detail & Related papers (2024-11-15T06:08:57Z) - The Role of DevOps in Enhancing Enterprise Software Delivery Success through R&D Efficiency and Source Code Management [0.4532517021515834]
This study focuses on enhancing R&D efficiency and source code management (SCM) for software delivery success.
Using a qualitative methodology, data were collected from case studies of large-scale enterprises implementing DevOps.
arXiv Detail & Related papers (2024-11-04T16:01:43Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
We argue that re-purposing existing tools won't solve the current productivity issues.
We introduce Metaflow, an open-source framework for ML projects explicitly designed to boost the productivity of data practitioners.
arXiv Detail & Related papers (2023-03-21T11:28:09Z) - Opportunities for Machine Learning to Accelerate Halide Perovskite
Commercialization and Scale-Up [5.5532399751725]
We review practical challenges hindering the commercialization of halide perovskites.
We discuss how machine-learning (ML) tools could help.
We propose how industry-academic partnerships could help adapt "ready-now" ML tools to specific industry needs.
arXiv Detail & Related papers (2021-10-08T06:35:46Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.