論文の概要: Enhancing Financial Time-Series Forecasting with Retrieval-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2502.05878v2
- Date: Tue, 11 Feb 2025 15:45:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:20.521545
- Title: Enhancing Financial Time-Series Forecasting with Retrieval-Augmented Large Language Models
- Title(参考訳): 検索型大規模言語モデルによる財務時系列予測の強化
- Authors: Mengxi Xiao, Zihao Jiang, Lingfei Qian, Zhengyu Chen, Yueru He, Yijing Xu, Yuecheng Jiang, Dong Li, Ruey-Ling Weng, Min Peng, Jimin Huang, Sophia Ananiadou, Qianqian Xie,
- Abstract要約: 金融時系列予測に特化して設計された最初の検索拡張世代(RAG)フレームワークを提案する。
フレームワークには3つの重要なイノベーションが含まれている: 微調整された1B大言語モデル(StockLLM)をバックボーンとし、LSMフィードバックによって拡張された新しい候補選択方法と、クエリと歴史的に重要なシーケンスとの類似性を最大化するトレーニング目標である。
- 参考スコア(独自算出の注目度): 29.769616823587594
- License:
- Abstract: Stock movement prediction, a critical task in financial time-series forecasting, relies on identifying and retrieving key influencing factors from vast and complex datasets. However, traditional text-trained or numeric similarity-based retrieval methods often struggle to handle the intricacies of financial data. To address this, we propose the first retrieval-augmented generation (RAG) framework specifically designed for financial time-series forecasting. Our framework incorporates three key innovations: a fine-tuned 1B large language model (StockLLM) as its backbone, a novel candidate selection method enhanced by LLM feedback, and a training objective that maximizes the similarity between queries and historically significant sequences. These advancements enable our retriever, FinSeer, to uncover meaningful patterns while effectively minimizing noise in complex financial datasets. To support robust evaluation, we also construct new datasets that integrate financial indicators and historical stock prices. Experimental results demonstrate that our RAG framework outperforms both the baseline StockLLM and random retrieval methods, showcasing its effectiveness. FinSeer, as the retriever, achieves an 8% higher accuracy on the BIGDATA22 benchmark and retrieves more impactful sequences compared to existing retrieval methods. This work highlights the importance of tailored retrieval models in financial forecasting and provides a novel, scalable framework for future research in the field.
- Abstract(参考訳): 金融時系列予測における重要な課題である株価の動き予測は、広範囲で複雑なデータセットから重要な影響要因を特定し、取り出すことに依存している。
しかし、従来のテキスト学習や数値類似性に基づく検索手法は、金融データの複雑な処理に苦慮することが多い。
そこで本研究では,金融時系列予測に特化して設計された,最初の検索拡張世代(RAG)フレームワークを提案する。
フレームワークには3つの重要なイノベーションが含まれている: 微調整された1B大言語モデル(StockLLM)をバックボーンとし、LSMフィードバックによって拡張された新しい候補選択方法と、クエリと歴史的に重要なシーケンスとの類似性を最大化するトレーニング目標である。
これらの進歩により、複雑な財務データセットのノイズを効果的に最小化しながら、検索者のFinSeerが意味のあるパターンを発見できるようになります。
また、ロバストな評価を支援するため、金融指標と歴史的株価を統合した新たなデータセットを構築した。
実験の結果,このRAGフレームワークは,ベースラインのStockLLMとランダム検索法の両方より優れており,その有効性が示された。
FinSeerは、検索者として、BIGDATA22ベンチマークで8%高い精度を実現し、既存の検索方法と比較して、より影響のあるシーケンスを検索する。
この研究は、金融予測における調整された検索モデルの重要性を強調し、この分野における将来の研究のための新しいスケーラブルなフレームワークを提供する。
関連論文リスト
- Multi-Reranker: Maximizing performance of retrieval-augmented generation in the FinanceRAG challenge [5.279257531335345]
本稿では,ACM-ICAIF '24 FinanceRAGコンペティションのための,高性能で財務特化度の高いRetrieval-Augmented Generation(RAG)システムの開発について述べる。
我々は,検索前段階におけるクエリ拡張とコーパスの洗練に関するアブレーション研究を通じて,性能を最適化した。
特に,生成フェーズの長いコンテキストサイズを管理するための効率的な手法を導入し,性能を犠牲にすることなく応答品質を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-23T09:56:21Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction [13.52020491768311]
株価時系列データに特化して設計された新しいLCMベースのアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
論文 参考訳(メタデータ) (2024-08-25T00:50:33Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPTは、金融リスク予測のための新しいアプローチであり、大規模な事前訓練された基礎モデルに基づいてプロファイルチューニングを行う。
FinBenchは、デフォルト、詐欺、チャーンといった金融リスクに関する高品質なデータセットのセットである。
論文 参考訳(メタデータ) (2023-07-22T09:27:05Z) - Feature Selection with Annealing for Forecasting Financial Time Series [2.44755919161855]
本研究では,機械学習(ML)モデルを用いた戦術的入力出力特徴マッピング技術に基づいて,財務時系列を総合的に予測する手法を提案する。
実験の結果,FSAアルゴリズムは問題の種類に関わらず,MLモデルの性能を向上することが示された。
論文 参考訳(メタデータ) (2023-03-03T21:33:38Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Price graphs: Utilizing the structural information of financial time
series for stock prediction [4.4707451544733905]
株価予測に関する両問題に対処する新しい枠組みを提案する。
時系列を複雑なネットワークに変換するという点では、市場価格をグラフに変換する。
予測モデル入力として時間点間の関係を表すためにグラフ埋め込みを用いる。
論文 参考訳(メタデータ) (2021-06-04T14:46:08Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。