論文の概要: Diffusion Models for Inverse Problems in the Exponential Family
- arxiv url: http://arxiv.org/abs/2502.05994v1
- Date: Sun, 09 Feb 2025 18:56:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:35:11.016022
- Title: Diffusion Models for Inverse Problems in the Exponential Family
- Title(参考訳): 指数族における逆問題に対する拡散モデル
- Authors: Alessandro Micheli, Mélodie Monod, Samir Bhatt,
- Abstract要約: 指数族からの分布を観測する逆問題に対処するために拡散モデルを拡張する。
提案手法は,確率スコアの抽出可能な近似法であるエビデンストリックを導入する。
我々は、サハラ以南のアフリカにおけるマラリアの流行予測において、現在の最先端技術と競争力を発揮することを示すことによって、我々の方法論の現実的な影響を実証する。
- 参考スコア(独自算出の注目度): 45.560812800359685
- License:
- Abstract: Diffusion models have emerged as powerful tools for solving inverse problems, yet prior work has primarily focused on observations with Gaussian measurement noise, restricting their use in real-world scenarios. This limitation persists due to the intractability of the likelihood score, which until now has only been approximated in the simpler case of Gaussian likelihoods. In this work, we extend diffusion models to handle inverse problems where the observations follow a distribution from the exponential family, such as a Poisson or a Binomial distribution. By leveraging the conjugacy properties of exponential family distributions, we introduce the evidence trick, a method that provides a tractable approximation to the likelihood score. In our experiments, we demonstrate that our methodology effectively performs Bayesian inference on spatially inhomogeneous Poisson processes with intensities as intricate as ImageNet images. Furthermore, we demonstrate the real-world impact of our methodology by showing that it performs competitively with the current state-of-the-art in predicting malaria prevalence estimates in Sub-Saharan Africa.
- Abstract(参考訳): 拡散モデルは逆問題を解決する強力なツールとして現れてきたが、以前の研究は主にガウス測定ノイズによる観測に焦点を当てており、現実のシナリオでの使用を制限する。
この制限は、現在までガウス確率の単純な場合のみ近似されたような、可能性スコアの難易度によって持続する。
本研究では,ポアソン分布や二項分布のような指数族からの分布に観察が従う逆問題を扱うために拡散モデルを拡張した。
指数関数的な家族分布の共役性を利用して、確率のスコアにトラクタブルな近似を与えるエビデンストリックを導入する。
本研究では,空間的不均一なポアソン過程のベイズ推定を画像ネット画像のように複雑な強度で効果的に行うことを実証した。
さらに,サハラ以南のアフリカにおけるマラリアの有病率推定の予測において,現在の最先端技術と競争力を発揮することを示すことによって,我々の方法論の現実的な影響を実証する。
関連論文リスト
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
本稿では,ガウス過程ネットワークモデルにおける仮説的介入の効果のベイズ推定の問題について考察する。
本稿では,ネットワーク全体の介入の効果をシミュレートし,下流変数に対する介入の効果を伝播させることにより,GPNに対する因果推論を行う方法について述べる。
両フレームワークを既知の因果グラフのケースを超えて拡張し,マルコフ連鎖モンテカルロ法による因果構造の不確実性を取り入れた。
論文 参考訳(メタデータ) (2024-02-01T14:39:59Z) - Sampling with flows, diffusion and autoregressive neural networks: A
spin-glass perspective [18.278073129757466]
障害系の統計物理学において広く研究されている確率分布のクラスに焦点をあてる。
我々は,フローベース,拡散ベース,自己回帰的ネットワーク手法によるサンプリングをベイズ最適分解法の解析に等価にマッピングできるという事実を活用する。
これらの手法が効率的にサンプリングできないパラメータの領域を同定し、標準モンテカルロ法やランゲヴィン法を用いてそれを可能にする。
論文 参考訳(メタデータ) (2023-08-27T12:16:33Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
本稿では, 左非可逆なプッシュフォワード写像に制約されたワッサーシュタインGANが, 複製を回避し, 経験的分布から著しく逸脱する分布を生成することを示す。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
論文 参考訳(メタデータ) (2023-07-31T06:11:57Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
本稿では,ハマー確率分布として表される観測データの可能性を考慮した,ガウス過程フレームワークにおけるロバストなプロセスモデルを提案する。
提案モデルでは、予測統計に基づく重みを用いて、残差を拡大し、潜伏関数推定における垂直外れ値と悪レバレッジ点の影響を限定する。
論文 参考訳(メタデータ) (2023-01-19T02:59:33Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。