論文の概要: A Novel Multi-Teacher Knowledge Distillation for Real-Time Object Detection using 4D Radar
- arxiv url: http://arxiv.org/abs/2502.06114v1
- Date: Mon, 10 Feb 2025 02:48:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:51.870582
- Title: A Novel Multi-Teacher Knowledge Distillation for Real-Time Object Detection using 4D Radar
- Title(参考訳): 4次元レーダを用いたリアルタイム物体検出のための新しいマルチ教師知識蒸留法
- Authors: Seung-Hyun Song, Dong-Hee Paek, Minh-Quan Dao, Ezio Malis, Seung-Hyun Kong,
- Abstract要約: 3Dオブジェクト検出は、安全で自律的なナビゲーションに不可欠であり、多様な気象条件にまたがって信頼性の高い性能を必要とする。
従来のレーダーは標高データがないため制限がある。
4Dレーダーは、距離、方位、ドップラー速度とともに高度を測定することでこれを克服し、自動運転車にとって貴重なものとなっている。
- 参考スコア(独自算出の注目度): 5.038148262901536
- License:
- Abstract: Accurate 3D object detection is crucial for safe autonomous navigation, requiring reliable performance across diverse weather conditions. While LiDAR performance deteriorates in challenging weather, Radar systems maintain their reliability. Traditional Radars have limitations due to their lack of elevation data, but the recent 4D Radars overcome this by measuring elevation alongside range, azimuth, and Doppler velocity, making them invaluable for autonomous vehicles. The primary challenge in utilizing 4D Radars is the sparsity of their point clouds. Previous works address this by developing architectures that better capture semantics and context in sparse point cloud, largely drawing from LiDAR-based approaches. However, these methods often overlook a unique advantage of 4D Radars: the dense Radar tensor, which encapsulates power measurements across three spatial dimensions and the Doppler dimension. Our paper leverages this tensor to tackle the sparsity issue. We introduce a novel knowledge distillation framework that enables a student model to densify its sparse input in the latent space by emulating an ensemble of teacher models. Our experiments demonstrate a 25% performance improvement over the state-of-the-art RTNH model on the K-Radar dataset. Notably, this improvement is achieved while still maintaining a real-time inference speed.
- Abstract(参考訳): 正確な3Dオブジェクト検出は安全な自律航法に不可欠であり、多様な気象条件で信頼性の高い性能を必要とする。
LiDARの性能は厳しい天候下で低下するが、レーダーシステムは信頼性を維持している。
従来のレーダーには標高データがないため制限があるが、最近の4Dレーダーは距離、方位、ドップラー速度とともに高度を測定することでこれを克服している。
4D Radarsを利用する上での最大の課題は、ポイントクラウドの幅である。
それまでの作業は、LiDARベースのアプローチから大きく引き出された、スパーポイントクラウドにおけるセマンティクスとコンテキストをよりよくキャプチャするアーキテクチャを開発することで、この問題に対処していた。
しかしながら、これらの手法は3次元の電力測定とドップラー次元をカプセル化した高密度レーダーテンソルという、4次元レーダーのユニークな利点を見落としていることが多い。
我々の論文は、このテンソルを利用してスパシティ問題に対処する。
本稿では,教師モデルのアンサンブルをエミュレートすることにより,学生モデルが潜伏空間におけるスパース入力を密度化できる新しい知識蒸留フレームワークを提案する。
実験では,K-Radarデータセット上での最先端RTNHモデルに対して25%の性能向上を示す。
特に、この改善はリアルタイムの推論速度を維持しながら達成される。
関連論文リスト
- RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
本稿では,柱型物体検出ネットワークRadarPillarsを提案する。
放射速度データを分解することにより、RadarPillarsは、View-of-Delftデータセットの最先端検出結果を大幅に上回る。
これはパラメータ数を大幅に削減し、既存のメソッドを効率面で上回り、エッジデバイス上でのリアルタイムパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-09T12:13:38Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D占有に基づく知覚パイプラインは、かなり進歩した自律運転を持つ。
現在の方法では、LiDARやカメラの入力を3D占有率予測に頼っている。
本稿では,4次元イメージングレーダセンサを用いた3次元占有予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:48:17Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4Dレーダーは、悪天候下での弾力性と費用対効果が認められている。
LiDARやカメラとは異なり、レーダーは厳しい気象条件で損傷を受けないままである。
本稿では,自律走行車のためのレーダーによる3次元物体検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T06:10:07Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radarは、新しい大規模オブジェクト検出データセットとベンチマークである。
4次元レーダーテンソル(4DRT)データの35Kフレームを含み、ドップラー、レンジ、方位、標高の寸法に沿って電力の測定を行う。
我々は、慎重に校正された高分解能ライダー、サラウンドステレオカメラ、RTK-GPSから補助的な測定を行う。
論文 参考訳(メタデータ) (2022-06-16T13:39:21Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。